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PREFIACE

ni ts rFI( I IN IC A I. itt i.:o irr surveys A rtiticial InIttellIigence rv!searc I in the area
or le'arining aitIII indultctive iitiirvi'tce. It wam writtent as Chapter xiv or Volume
tiI or Lthe Hbandlbook of Artifiritil Intetijcrne. Since Al learning research is still
in t4 inf an cy , t Itis chiapter ilieim not prsi ~~'tii, amny well-ti iiltrmhiton research
results. Insteadt, Av have attemitpte'd to provide, a fratnework _,viewing past
research and a list itt opent problemits for fut tire re'search.

This survey is neciessarily itncomtplete, aud we apologize to those rese~arch-
ers whlose' wo rk is not1 111(1111ill i. III c hoo sing whIic itI y sIens to incltude,
we considetrei: several dillerentit criteria, sti'hi m4 himtorical iniportattee (e.g.,
Sautit l, WVat rmiiati, WVYinst on), per rot man ce (e.g., C IS/11)3, Me ta- lEl'N llAl,,
Saiiitil), re levanti to) oiltsta ittlltg probilemis '(e.g., 1.,Al ), and demonostration of
unuisual tech ii i tis (e.g., I en at, Di)et ter ichI and M IichIialsk i, L angley). we at-
tempted to select, At least one representative program froin vacit of the various
learnitn ig iliet ioils and learnii ng si tuations. Iii some cases, we have also taken
libertiest in recaistingt the( terminjiology and representation of a systent in order
to imitprove Lthe niiiiorminty of the' chApter (e.g., I hayes-Roth, Suisiman).

This chapter was a groi 1) effort. Bob Londoti helped to outline Lthe chapter
and w rote thie art.icleis on rote learntinig and ailvice- tAik g. K(ennieth Clarkson
contributed Ltte article on grmvit atical inference, anid Geoff' lroiney wrote tite
ar~iclc on adaptive leariting. The remaindier of the( chapter waS written by
TIom Diltiettrich,. Valuable criticisms- were providled by our reviewers: James S.
letuitett, Bruce G. Buchanian, ltyszard S. NI icholsk i, 'Thomnas NI. Mitchell, JIack
Mostow, D)av id Shtor, and Pauil IUtgolL. it addit~ion, the volume editor, Paul
It. Colt en, ait Litte trorvfessiotioal e'd itor, D)iannte K auterva, lteltied uninen.sely to
im prove Lithe torm antdi cm' teut. or Lthe chiapter. Thtan ks also to Jose L . (1onzalez

for wssisting in the prodtuctioin of th~is technical report.
We hope that thtis chapter will serve both.1 as a useful refereince for studentts

of lcarning and as a techiiical contiribtition to Al learnitig research.t

Toni Dietterich, chapter editor
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A. OVERVIEW

LEARNING is a very general term denoting the way in which people (and

computers) increase their knowledge and improve their skills. From the very

beginnings or Al, researchers have sought to understand the process of learning

and to create compazter programs that can learn.

There arc two fundamental reasons for studying learning. One is to
understand the process itself. Hy developing computer models of learning,

psychologists have attempted to gain an understanding of the way humans

learn. Philosophers since Plato have also been interested in learning research,

because it may help them understand what knowledge is and how it growe

The second reasion for conducting learning research is to provide com-

puters with the ability to learn. It has long been a goal of Al to develop
computer systems that could be taught rather than programmed. Many other

applications of vcomputers, such as intelligent programs for as.isting scientists,
involve the acquisition of new knowledge. Thus, learning research lhas poten-
tial for extending the range of problems to which computers can be applied.

In this overview article, we first present a short history of Al research on
learning. This is followed .y a review of A. perspectives on learning, from
which a simple model of learning is developed. This model allows us to discuss

some of the major factors affecting the design of learning systems.

A Brief History of Al Research on Learning

A. research on learning has evolved through three stages. The first,
and most optimistic, stage of work centered on self-organizing systems that

modified themselves to adapt to their environments (see Yovits, Jacobi, and

Goldstein, i962). The hope was that if a system were given a set of stimuli,
a source of feedback, and enough degrees of freedom tu modify its own orga-
nization, it woald adapt itself toward an optimum organization. Attempts
were made, for example, to simulate evolution in the hope that intelligent pro-

grams would result from the processes of random mutation and natural selec-
tion (Friedberg, 1958; Friedberg, Dunham, and North, 17959; Fogel, Owens,

and Walsh, c"fi6). Various computational analogues of neurons were devel-
oped and tested; foremost of these was the perceptron (Ilosenhlatt, 1'957).
Unfortunately, mostL or these attempts failed to produce systems or any com-
plexity or inteiligence (see Article XIV.D2 on adaptive learning).

Theoretical limitations were discovered that dammpencd the optimism of
these early Al researchers (see Minsky and l'apert, 1969). In the 196Os, atten-
tion moved away from learning toward knowledge-based problem solving and

325
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natural-laniguage understanding (M iisky,I1fi$). T.hose people who continued
to work with adaptive :systemis cease(] to consider themselves Al rr'scarchers;
their research branchedl oif to become a subarea of linear systems theotry.
A daptivc- system i techniquiies are presently applied to problems in pattern
recognition and control theory.

The beginning of rihe 19701 saw a renewal or interest in learninsi with
the publication of Winston's ( 1970) influtential thesis. lIn this second stage of
learnuing research, workers adopted the view that learning is a complex and
diffhcult procoss and that. coruisequeiitly. a learning systemt cannot be expected
to learn high-l1eveli concepts by starting without any knowledge at. all. This
view hias led researchers. onl the one hand, to study simple learning problems
in depth (stich as learning single Concepts) and, on the oclher, to incorporate
large amnounts of doin Litt kniowledge into learning ~ystcius (such as the kteta-
Dl-'NDhlAl, and AM prograinns discussed in Articles XlV.Dlb and XIV.D4-r) so
that they could discover high-level concepts.

Athird stage flann eerh motivated by the need to acquire

knowledge for expert systemns, is now under way. Unlike t~he first two phiwe." of
learning research, which roctisrd on rote learning and learning from examples,
the current work looks ut all formns of learning, including advice-taking and
learning fromt analogies.

Four Persipectivesa on Leanning

Hlerbert Simon (in pres.s) defines learning ats any process by which a
sysqtrt imnprtines its performa~nce. Ilis defimnition assuines that the system has
a task that it is atteniptirig to perform. It may imlprove its performance by
applyinig new methods and knowledge or by improving existing, methods arid
knowledize to make themnt easter. more accurate, or more robust.

A more constrained view of learning, adopted by manly people who work
on expert systems, is that learning is t/ne acqlipimition of explicit knowledge.
, any expert systems represtent, their expertise as large collection ofrue
that need to be acquired, organizet", and extended. This view emphasises
the importrance of making the acquired knowledge explicit, so that it caii he
easily veril'ncd, rinotfilied, anid explained. Researchers Are presently working
on knowledge-acquisition systemsi that discover new rule? from examphles or
accept new rules from experts and integrate them into cthe knowledge base of
the system.

A thiirid view is that learning is skill ascqusisition. Vsyrhologists have
pointed ouit thInat long after people are~ told /ioto to do a task, such as touch
typingv or computer pro~grainiiing, their performance on that task continues
to improve thnrough practice (Norman, 1980). It appears4 chat although people
can easily understand verbal instructions on how to perforin a task, much
work remains to he dione to tonir that verbal knowledge into efficient, ineut-al or
muscular operations. Researchers in Al and cognitive psychology have sought
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tl .c :Nindti of k ii'.vh'hi.' that are needed to pvrform skillfully.
-,- ,. m,ýýcl people icur tli:a knticiw ledg through practice are

IP~ ii' ei. rnO ~torpritet of *4Cttcc is ustially Considel&red( to) bon.ftile U i.d

iv. ý. , taitil )or ciiltiire learnis iLbout the world. Thos, a fourth
I!I i i lha!. it ri fl'heoy fa'rflllfi)ti, tiypotheait frrnistton, and

ý7 i-.-:ies ut.r'er-ice Woirk )it I hcory lirratiini hiats reniteril on iindlerstandinK
v. oterit ,.i hinl- !iiolt-4 to ilerrtibe 0111 oxpjlain coniplex phenomena. A
it,(-itv p~r (*t cr, oni~i is lit 'Npoitheies iorniation -- the activity of
6inion t, or too p1 tsll ivpo~itiivws lo i.\pIlilin a particil~r set of data

in' !wttlfct of % ntor' ;ionvir.0l thery Anuothi r isvt.pa of tieory formation

;.i wiiTcti. -11tn~ In proccs o( inferrinig getieral laws f1mm particular
I-\ .1I! 1 9i i .

A1Ž'i'~\'i of .eiiinj ii ILI Ityphcnticinim

I1 tbiu'for AW of ev~irritiiz, Simnon*'s (iii presm) iz perhap4 the miost

,(~ti1 'vsi I'A ý hiig is deiiraitmio i %~ tLitrtini point, we have' developed
(ie, sim ple mocl of learnint, sysitells shown in Figure A 1. Throughout
thi., rh~ipter, Ac, uv' t lmi ;mniple mode'l to orgattize our liscussuion uf learning

c!Iv ~ttIn.
Iinit theI ri titIii. tIIi, -t cr c It- ic teoe i vlvcla r; i, iv e bo thIs oti0I i' I or' iLLio n (e. g., fticts

rtau1,)T itdil in pril.!, -aici'lkis iir AtieitMiniue by an exwert), while the
'I-\i detioto :mroaiiri-4. Il.' 117O.%5 41hoW t lie redoniunant direction of data

low t itroi'!i The U' riink t;y; aem. rte oy trvroll nient so ppliCS sMeI inrormia-
:or i,[lie r, n !oi'ttent. (Ii leartinig elemtent usesS this informnation to

tiiiki' iiliproaetinittts iin explicit kiowilge~i hi.ve, aidi the perf'ormance cle-
wont ivs , t I I, k no% el.ie v. to perform its I sk. l'itally. inforniation gained

tuorin, ;it tcmnpit., to pirfr I m i!it, t ik ian se4rve xiS foctdhack to the learning
1JrtntI his toicl, l ttrmitttivi .miii omti,,, ii.iy nimportanit functionvi. it is

i-,IiI, hoai'v er. inI i iat it all Iows Its it) cl.L-sil'y leairninig systrnus according to
how t hey 1iii' tiaic4 four finnational unitits. in anl% part iciilar application, the
(11" 0i. 111ttuulit. 11wa'lkiiwia'lg' li:uwa. and theý performance task aleterinine the

ni.itire ofthei ;itth liilar ie~irniut prolalem x(tJ. hience, thle parneifilar functions
1.IL Lhrt. la~itnintr; .iini. it must. fl'ill. lIn ti follotw lag three secations, we

rII Pon La n KnorauwlIde Performance
f311-t lise Element

\-r, A' inpe1)1 fioitel of learning sy!4temst.
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examine the role of each of these three functional units that 3urround thc

learning elcenent.

The Environment

The most important factor affecting the design of learning systems is the
kind or inforinat non s.uppliedl to the systern by the envircitmnmnt, -~part icularly
the level and quaility of thi4 information.

The level of information refers to the degree of generality (or dornain
of applicability) of the iinfortnation relative to tine needs of the pvrfurniance
element. iiigh-ievci information is abstract information that is relevant to a
broad class of problems. Low-level in~formiation is detailed iniforniation that is
relevant to a single problem. The task of tine learning eleriknemt can be' vimewed
as the task of bridgimig tihe gap betwecn the level at which the information 'is
provided by tite mnviromninerif and the leve: at which the performance e-lenment
can use the information to cat y oilt its4 function. Thuns, if tihe learningI systern
is given very abstract (hnighn-level) advice about its perfurtrinanne taLsk, it luimit
fll in the vinissing details, so that the performance eleminent can interpret
the information in particular situations. Correspomndiingly, if the systein is
given very specific (lovi-levei) information abotit how to penrformn in particular
situations. tine leaening elemnent, must 4etueralize this inntocination -- by ignoring
uninnpurtmiit details-into a rule that can be used to guide the perfornmanice
elemient in a broader class of stituations.

Since its kncwledge is imperfect, the learning elemnent uloes not know in
advance exactly how to INi in oniissing details or ignore inin iportant details.
Consequnently, it must guess- - that is, form /m'pothesmes ----aboiut how the gap
between the levels should be bridged. After quesiinig, the system mnust receive
-;ome feedback that allows it to evaluiate its hypotheses and revis chen if
necessary. It is in this way that a learning systemn learns: by trial, and error.

'rhe level of the information pros tdvd by the environment dneterminnes
-the kinds of hypothes4es that the sy.stem tminst generate. Four basic learning
situations can be discerned:

1. Rate learnivil, in which the environinemit provio.-mi ,information exactly at
the level of the performance task amid, tbuui, no hypotheses are needed.

,1. lennrrnn" by being toid ini which the information r'ovided by the environ-
mnent vq too abmtrnct or i;,nerral and. thus, the learning element '7111t
hypolnlnesmgc the inissinr details.

:1. !. arnunyj fromv ezun?'itylns, in whinch th ie in1 forir mint ei pro'vinded b) tine en vi-
roinietint is too spvcitir aind det.anleil mid. tnuns. Ltiur lu-armuumuu elmottnt must
hypo~tiesize morn' general rules.

.1. 1,earnini§ 4.j 4MSlOgVr, in whni.h the information provileui by the environ-
:ieint is relevanit only to in analogouts performnance task and, thins, the
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learning system must discover the ýtnalogy anti hypothes~ze analogoits
rules for its present perfo!-mance task.

Each of these learninir situations is discume.d ini more detail Weow.
The quality or ir Formation ~an have a significant effect on the di.Ticulty

of the learning task. laduction is easiest, for examnple, wf~er. the training
instances are selected by a coonerative tracher who chooses "clean" exam-
Pies, LlaSsiflie them, and presents them in good podatgogical ordecr. Learning
by indtiction is particularly dJiffic ult when Ole training inIstaiilccs are made
up of noise-riddeii, unclassified data tbat are rim-sei'tCd" by nature in an
uncontrollable fashion. Simiilarly, in -idvice-tdkiria s,,I tents. informatioe. is
of little use if it iý provided by an unreliable and lin.articulate expert; rote
learning cannot succeed with poor- qual ity. pom~ibly contradictory dlata; anti
atiaiogies are tieicss if th..y are cluttered with errors.

The K~nowledgje Base

The second factor affecting thle design of learning systems is tile knowledge
base, its form anid cuntent. WVe discuss first Ihe formn, or rcpresentataonal sys-
te-,, 'In which the. knowledge base s,. expressedi: it is a particularly importaric
design rniisiduvration (ice Chap, III, in %Vol. 1, on representation of knowkcdg@:).
,Most work in le-irriing hws used one of two ba.,ic repre-sentational forms-
feature vectors and predicate calculus -although other forms, such-1 as prodc-le
Lion rules, gram in ars I. SP kunctions, numecrical polyniool ialst, semantic nets,
and frames, have also been used. These represenitation~al forms vary along
foujr important eisiiensionz: expirrssivcness, eame of inference, miodiflability,
and extendabili~y.

Expressivzness of the representation. lin any Al systemn it is impor-
tant to have at epresentation ill which the relevant, knowledge can be easily
expressed. Feature victors, for example. are isuteit For *fescrihiiig objects that
lark internal structure. They describe objects iii ternis of a fixed set of fea-
tures (such as color. shape, aind -size) that take on a finite set of valucs (such
as red or green, circle or squa-e, and imnafl or large). Predicate calculus, on
the other hand, is useful for desacribing structured objects and situations. A
soituation in whiich a red object is onl top of aI greenC one, for exauipfe, can be
expressed as 3 x, y :REiD(z) A~ CruZrN(y,) A ON-roI(.r, y).

Earn,! of' inference within the repremuertatica. The computational
cost of performing in~ference is another important prop-rity of it representa-
tional systein. Ono type of inference trcriicntly renil reiJ in learning iystems is
the COMin ri-Alli of two de-sc riptiouus tAo deterni iint, %i( thuer they -ire equivalent.
ft is very easy tro test two featuire-verctors for eqIiiivafeiuce. Thel( comparison or
two predicai --calcilus expret.stor.s is more cnstly. Since many !Parning systems
miust sprarchi la, ge spaces of possible dlescriptions, the cost, or u'omparisoias can
severely limit thle extent of these searches.



330 Learning and Inductive Inference XIV

Modifiability or' the knowledge base. A learning systemn must, by its
verv iit tire, mtodify >owiiv part of the knowledge base to store the knowledge it
is gaining. Corimeti'Ilenth, most learning systcmts have employed explicit, styl-
ized reprewiJ.'tatIons (sti1ch aus featuire vectorm, predicate calcu~tis, and produc-
tion ruilq:) III which it is ewly to add knowledge to the knowledge base. Very
little attention has- beeni giveni to the problem of adding to knowledge b.Lies in
which siihstarti;d revision and integration must be performed. These prob-
lems ariise. for oxaiiip~e. in systeins that refer to tinwe or state information

(eg.procedural representations) and in systems that make default assuimp-
tions tlat nay Liter 11eed tj be retracted.

ExtendAbility of' the representation. For a learning programn to
Manipuiate v-jiliritly It.s acquiired krnowlet~ge, there most be a nieta-level
description m ithin the programt that tells how the representation is striic-
tored. vhii, iieta-level krmo'vledge has usually been einb(Aied in procedures
that manipilate the data structures of thme representation. Of recent inter-
est in learning; research, however, are reprPsenta3tional systems in which this
me-ta- knowledge is alsow mrade an explicit part of thme knowledge base (see l)hvis,
1976). The purpose i6 to allow the program to examine anid alter itzi own
repre'seetation by addmig vocabulary terms and representational structures.
This ability in t ira provides the possibility of developing learning systemrs
that are openl-ended -- that is, that can learn succe&ssively more complex units
of knowiedgc wvithiout limit. The outstanding example of an extendable rep-
resentation is L~enat's (1978) A..M programn (see Article XIV.D~tc), which allows
new concepts to be letined in terms of old on"s. Recent work on RLL (Greiner
and Leniat. 1940; Greiiier. 1980) has pushed this idea much further toward
allowinqg a programn to uleline new representations dynamically.

Now thalt we have VVIamined issues relating to the form of the knowledge
ba~se, we to~n our attention to its content. A learning system does not gain
knowledge by starting 'rrom scratch," that is, without any knowledge at all.
Some knowledge mnust he employed by every learning system to understand the
information provided by the environnment, to form hypotheses, and to test, anid
reline tho-.;e hypotheses. Thus, it is more appropriate to view a learning nystem
as extending and improving -tn existing body of knowledge. Unfortunately,
-in, mrost learning iystern%, the knowledge employed is muon explicit; -it -is- built
into the programn by the designer. Throughout this chapter, we try to0 point
out the ways in which domnain-specilic knowledge has entered into existing
learning systems.

The IPcrfior"manre E'lemcnt

The performance element is the focus o,^ the whole learning system, since
it is the actions of thme performance element that the learning element is trying
to 'mprove. Thrre are three important issues related to ".e performance
element: complexity, feedback, and transparency.
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First, the co"nPiezity of the task is important. Complex tasks require
more knowledge than simple twsks. For instance. a sinple taisk like binary
classification, in which objvcts are classified iat4t) one4 of two igroups. requires
only a sitngle cLasisilkcation rule On t he other hand, i program that Can play a
reasonable poker game (Waterman, 1970) needs ibout 20 rulet, arnd a medical-
diagnosis SYsitemi like M.YCI N (Shortlilre, 1976) emnplov.i several Litt tired rules.

In learning from examples, three cl~sses of p4irforrnarkvt, tasks can be
distinguished according to theitrominplexitv The munpl,.-St porformance task
is eiassificaltxov or prediefton basL-cd on a minyih citvitept or r~zke. Indeed, the

problem oif learning sqingle conerpts fronm exantlnles has rrcjived more study
than any other problem in Al learning re-Aearchi Slightl m iore complex are

tasks involving mutltiple concepts. An example is the problem of predict~ng
which bonds of in organic mno~eule will be brokvt'm in the fliass p~rectrometer;
the D12" DItAI. prediction programn employs a set, of cli-avage ue to PCferftr
this task. The rn~v4t complex tasks for which learni'g systt'ns have been
developed are !mall planning ta.sks in which a !,ct of rIfles must tie applied in
sequence. SymIibolic ,integration, for e'xam~ple, is a:Lgtak that requiire-s chaining
together several integration rules Io )htai n a solut ion The ktr tel-4 iqn learninK

frorgi examplens c!onsider these th~ree c!assAes of performance task-s and their
corr-.-sporidinig learnii.g methods.

As the performance ta~sk becomnes more complex mnd the k:ivwledge base
grows in size, the problems of insejrataini flPIv rt ler, int li'iqrinnsznq inco~rert
r~ea~e become muore rurn pl irateod. The integrrtiton problem --thait is, the prob-
hem of integrating a new rule into an existing set tof rules-is dillicult, because
the leatrning systemn must consider possible interactions bvtween the new rule
andi the previous ritles. lDurintg the construction of the \lYt N system, for
example, t here were several cases, in which -i new ruile causedh Axisting rules to
be applied incorrectly or t4, ceaswe being applied *ilo"gether (see Art idle VIIfli).

The problemi of diagnosing 'incorrect rules- :lso known as Lthe evedit-
aiingnment problemn tMinsky, 19,63) --can be very dlifflczilt in systems that
perform a seqite-ce of actions befiore receiving atny fee eback. Consider, for
example, the problem of learnin;g to play chess Ly first playing a complete
game, then determining who woiimand lost, anti finally updating Lthe knowledge
base accordingly. The credit.-assignntent problem is the problem oh assigning
credit or blame to Lthe individual decisions that led to some overall result-in
this caui, the individual chess moves that contributed most to the win or loss.

The second important, Issue related to the p--rfo)rmance task ;s the role of
the perform;-Aice olement in providing fcedbuick to the learning elerient. All
learning systems lutist have stimn w iy of evaluat-in; Lthe hypotheses that have
been proposed by the learning element. Sonie progrartns have a separate body
or knowledge eor such evaluation. The AM p~rogram, for example, has many
hecuristic rules that awssess the interesting~ness of the new concepts developed by
the learning element. A more frequently useti technique, hiowever, is to have
the environment, often a teacher, provide an external performance ,tandard.
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r'.oi ,rr hl,,ow ýtwI!i tlrhe pvrfortiance o lement is doning relative to ths
~i.Lmorif, the ~v,,tvin1 c'an ovailate iti current, itorte ot' Itypotlrises.

tit -Y rtt cm-iIi.a leari a ýrrrgle conrcept. from training .Instances, the per-
rnendinao&ri is thi' Correctn ci o-rtrlcAton of' o.ih training instanice (as to

iw;1wr IL is, or 1.4 tor, aot nrstinicv 4 thre concept to Ie learned). [it most
!11 !.11 !run Ii instancesz art, prer- Lausifivii by A rcliable teacher. In the

t" )I""OUA fit II 'e .\rticte XIV Ott,), tie pterfornianec standard is
* he Li, pecSLei-rlim prodl'I4 cr when t. m noieculc of known st~ructure is

third :ssow i'r",rt~t hc p-rfirrmantce Lazsk is Ihet tran~sparencry of the
.ri ric citirent. I'or ! it, elvacnhi v~i-t'ini t to I.-'.igri credit or blame to

:ilriles tit ýhv Knolwire lr a-, it is 11.eftll for the learninig elemecnt
'I L Lcri*i to) I he (it rti~il wtinsm ofthen perforrni~inie elcmetit. Consider

:If. pih rohh'n 4 'i~rinium how to pl;ky rheuis. If the learning Clemnent
;1CIA tnlce. of *1 I the( iii yes th.%t wtere cinnstirc ed by the performance

rit her thimn lrii I hi-,v mouve that werq actua~lly chosen), the credit-

Of ri :e., .f the Chapter

* It: li prVltns, ,cct ;ot. 'At, Lic~ dtt, interaction between the infor-
n10itl noPrnVIrlcd by thle ontvironnnennt aind the problemns that are presented

* o t If, Iaarnliilg clement. F'rom t his uralysis. Cour leavrning 6ituiat ions could
l;4 l-i.II this 'Iftoln. %teq tiscur,,i these four -iitoations in detail and

ý,ivc kit -vm'tilpiti of* a !catcllivi problem fin each situation, irhe remnainder of
, ii hawrr -.4 ortzantied arounrd t htse lour .4ittiations, vvitli a separate set of

Airt iv Iý .Voted I.) cm-II

Rot~e learning. Dive ntnplest lnarniinq sittiatioti is one in which the
,tio irnintew. ~rp~e kniowleli!e n .% form that, van he used directly by the

p~rtirl~nce 'ltiiIt. Hu leiritiriq siy'%tn hoes nlot tictd to do aity proce~ssing
utiui~utitrlor intcrpret the intiOrmratimi ~mipphued hy the environment. All

trnst~t do is tinemorizu tC it, itncoming informiatron for later use. This is a form
ot' ote !-arrtii'--- if it 14 .rttiSidererl learning axt all. Virtually every computer
'VT1,0T1 Can he sai~tl to do rote' learning inisofar as it stores instructions for

ner~rlilig.rtask.

A\ll imlpirtarlt A( :ktudy of rote learning wa-si undertaken by Saimiuel (1959,
I '7.I It( uh'velojrcd L crhcekers,- play rrg program that Wwa able to inmprove
,I !'r!n)tttAIuelivb ttimotrliziru every boarud pos;itilon that it evaluated, The

pru'rrnr I. cit i .Imtn~rd tritinax lok inr vhsart-h (sve Chap. 1, in Vol. 1)
i]Lt, ii~li powten lit 1'lhiire tio~irul uotions~us. A simiple polynomial cvailua-

1, et !,gli ttlon siri hoardI proý *'rtics tuch as centter control, fork threats,
1111d pi-lb5lo~txlrtt~ Ili lerms of' orir primitive learning-systentm iodel, the

14(1<- ladsarch portion)1 of ý.rmmvjl's program servedi as the "enviromnennt."
It tiplihledl thre learnitig, elerrrenrt withi board positions and their backed-up
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minimax values. The learning element !,imply !stored the-se board positions
and indeited themn for rapid retrieval. lntereitirgly, the look-ahead seacch
Portion or Samitel's program also served as part of the performance element
that played a game of checkers againsit mi op oneiit. !t uised Lthe previously
memorized board posýition3 to improve thc speed and depth of its look-ahead
search dairing subtsequent games.

Learning by being told -Advice- taking. When a syitem is given
vague, general-puirpose know~eilge or advice, It ous1It tran4forun this high-levu!
knowledge into a form that can he used readily by the performance element.
This transformation is called operationahleiztion. The system must understand
and interpret the highlu-evel knowledge and reiate it to what it already knows.
Operatioiualizai ion is an active process t hat cant involve such activities as
deducing Lthe consequences of what it h.%x been toli, making a p p Lions and
"filling in thc details." andi icciiring wlivi ýo iwk (or wnore idvice. McCarthy's
(1958) propotsal for aii a.dvice ~aker" was the first description of a system that
could learn by be-ing told. %fore recent work iii the area of learniing by being
tohld includes the TEIRE'SIAS program (Davis, 19716) and Mostow's program
FOO (Mostow and Ilayes-Roth, 1979'; Mostow, 1981).

FOO, for example, is told the ruiles of the, game of Hearts aiid is given vague
strategic advice suich as "Avoid taking points." It operationalizes this advice
into specific strategies suich as "Play lower than the highest card so far in the
suit led." This kind of op,'rationalizatioti i'u similar to the kindt 6f processing
performed by ordinary lamugumagc oinpilers that convert unexecutable high.
level languages into directly im~tcrpretahle mnachine code. lit the same trivial
sense that every computer system can he iaid to do rotc learning, every
systcmn can also be said to learn by being told: Advice in ithe form of a high-
level language program is compiled aiid WasCsebled iAto anl executable object
program.

Learning f'rom exam ples-Ind uction. One way to teach a system
how to performu a task is to present it. with examples of how it should behave.
The system oiiuist then grrnerali?.e these examnples to tiod higher level rules that
can be applied to guiciid the performance veliemime. Examples can be viewed as
tieing pieces of very specific knowledge that. cannot be used efficiently by the
performance element. These are transformed into more general, higher level
pieces of knowledge that ,ain be used effectively.

For example, consider the problem of teaching a program to recognize
poker hands that contaiii a pnir. The program would be presented with sample
hands that, it is told, contain pairs. Ilere is such a training inistanice:

i of cloibs, .1 of spadles, 5 of diamonds, 1) of hearts, jack of dliamonds.

This training example is a very specific pie'ce of knowledge. If the program
mcrely memorized it (by rotc learning), it would now know that the hand

4 of clubs, 4 of spades, 5 of dfiamonds, 6 of hearts, jack or dliamonds
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contains a pair. It would not know that the hand

4 o" clubs, '1 of spades, 5 of diamonds, 6 or hearts, 8 of diamonds

also contaikis .air, since the program has not generalized its knowledge. To
recognize all possible pair hands, the progrrlm needs to discover that the hand
!just contain two cards of the same rank and that the remaining cards are
irrelevant. The generaliiation of knowledge to make it apply to a broader
class of situations is the key inference process in learning frnom examples.

Learning by analogy. If a system has available to it a knowledge base
for a related performance task, it may be ;,ble to improve its'own performance
by recognizing analogies and transferring the relevant knowledge from the
other knowledge base. Thus far, however, very little work has been done
in this area. Some of the open research questions are: What exactly is an
analogy? flow are analogies recognized? flow is the relevant knowledge
transferred from the analogous knowledge base and applied to accomplish
the desired tasks?

Suppose, for example, that a program has available to it a knowledge
base describing how to diagnose diseases in human beings and someone wants
to use the same program to diagnose computer-system failures. By finding
the proper an•vlogies, the program can develop classes of computer failures
("diseas•es") and possible solutions ("therapies"). Diagnostic procedures can
be transferred as the analogy is developed (e.g., x-rays can be analogized to
core dumps).

We do not include in this chapter any articles discussing learning by
analogy', since this area has not received much attention.

Conclusion

This introduction has surveyed Al research on karning and presented a
simple model of Al learning systems. The model ha-s been used to discuss the
factors that bear upon tile design of the learning element. These include the

.level and quality of the information provided by the environment, the form
and content of the knowledge base, and the complexity and transparency o7
the performance clement. Of these factors, the most important is the level of
the information provided by the environment. This has been used to develop
the simple taxonomy of four learning situations that provides an organization
for the remainder of this chapter.
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B. ROTE LEARNING

B1. Issues

ROTE LEARNING is memorization; it is saving new knowledge so that when
it is needed again, the only problem will be retrieval, rather thai a repeated
computation, inference, or query. Two extreme perspectives on rote learning
are possible. One view says that memorization is such a basic necessity for any
intelligent program that it cannot be considered a separate learning process
at all. An alternate view regards memorization as a complex subject tha,
is vital to any effective cognitive system and well worth study and modeling
on its own. This article takes a less extreme perspective, partly because the
former viewpoint leaves nothing to say about rote learning and the latter
would require more than is appropriate here. (See Chap. Xf for a discussion
of Al investigations into human memory processes.)

Rote memorization can be seen as an elementary learning process, not
powerful enough to accomplish intelligent learning on its own (because not
everything that needs to be known in any nontrivial domain can be memo.
rized), but an inherent and important part of any learning system. All learning
systems must remember the knowledge that they have acquired so that it can
be applied in the future. In a rote-learning system, the knowledge has already
been gained by some method and is in a directly usable form. Other, more
sophisticated learning systems first acquire the knowledge from examples or
from advice and then memorize it. Thus, all learning systems are built on
a rote-learning process that stores, maintains, and retrieves knowledge in a
knowledge base.

Rote learning works by taking problems that the performance element
has solved and memorizing the problem and its solution. Viewed abstractly,
the performance element can be thought of as some function, f, that takes an
input pattern (XI ...... ,) and computes an output value (Y,, .... , Yp). A rote
memory for f simply stores the associated pair [(K, ..... X,J), (Y1, ... , Y],[2 in
memory. During subsequent computations of f(XI, ... ,X,,), the performance
element can simply retrieve (Yt, ... , ,Y,) from memory rather than recre-
puting it. This simple model of rote learniatg is depicted in Figure lI-.

Consider, for example, an automobile insuramce program that determikies
the cost of repairs for damaged automobiles. The input pattern is a deser p-
tion of the damaged automobile, including make and year, and a list. of t le
damaged portions of the car. The output value is the estimated cost oftVt e
repairs. The system has only a rote memory. To estimate the cost of repair
it looks in its memory for a previous automobile of the same make, model,

335
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t store

(XI, ..... X.) -- (Y, .. Yp) -. 1 [(., . .. x )(YI, . .. •P)l
Input Performance Output valte Associated

pattern f'unction of computatiLon pafir

Figure BI-1. Simple model of rote learning.

and damage description and retrieves the corresponding cost. If it cannot
find such an automobile, it uses a set of rules (published by a consortium
of insurance companies) to guess the cost of the repairs and then saves its
estimate for future use. This computed estimate, along with the description
of the damaged automobile, forms the associated pair Lhat is memorized.
I Lenat, flayes-Roth, and Klaihr (1979) provide an interesting perspective

on rote learning. They point out that rote learning (or "caching") can be
vliewed as the lowest level of a hierarchy of data reductions. The reductions

Sare analogous to computer language compilation: The purpose is to refine the
original ikiformation down to the essentials for performance. In rot.e learning,
we generally attempt to save the input/output details of some calculation and
so bypams a future need for the intermediate computation process. Thus, a
calculation task, if valuable and stable enough to be remembered, is reduced
to an access task (see Fig. Bt-2, below).

Just as calculabions can be reduced to retrievals by caching, so can other
inferential processes be reduced to simpler tasks. For instance, deductions can
be reduced to calculations. The first time we are asked to solve a quadratic
equation, for example, we must follow lengthy deductive chains to find the
quadratic formula. Subsequently, we can simply compute the roots of a
quadratic equation directly from the formula. We have distilled the resalts
df a deductive search an(J summarized them as an efficient algorithm. Going
one step further, the process of induction can converti a huge body or t-aining
instances into a single heuristic rule. Once again, the primary gain is in
efficiency: It is no longer necessary to consult a huge body of examples to find
out how to behave in a new situation.

ACCESS • CAILCIULATE DI)EDUI'CE INI)D'CE

Cache Algorit bim I heuristic
(Role) or Theorem Rule

Figure BI-2. Spectrum of data reductions (from Lenat et al., 1970).
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Isues in the Des~in of Rote-learning Systema

There are three important issues relevant to rote-learning systems: meme-
ory organization, stability, and the store-versus-compute trade-off.

Memory organization. Rote learning is useful only if it takes less time
to retrieve the desired item than it does to recompute it. Retrieval can be
made very rapid by properly organizing memory. Consequently, indexing,
sorting, and hashing techniques have been thoroughly studied in the computer
science subfields or data structures (Aho, llopcroft, and Ullman, 1974) and
database systems (Wiederhold, 1977; Date, 1977; Ullman. 1980).

Stability of the environment and the frame problem. Rote learn-
ing is not very helpful or eflective in a rapidly changing environment. One
important assumption underlying rote learning is that information stored a•t
one time will still be valid later. If, however, the information changes fre-
quently, this assumption can be violated. Consider, for example, information
gathered about automobile repair costs during the early 1950s. Such informa-
tion would be of little value for estLimating automobile repair costs in the 1980s
because the world has changed in critical ways: The makes and models of
cars prescntly manufactured did not exist in the 1o95s; furthermore, inflation
has made the direct comparison of dollar costs impossible. A rote-learning
system must be able to detect when the world has changed in such a way as
to make stored information invalid. This is an instance or the frame problem
(see Chap. III, in Vol. I).

Some solutions to this problem have been developed. One approach is to
monitor every change to the world and keep the stored information always
up to date. Thus, when an old model of automobile is discontinued, all
information about that model could be removed from the knowledge base.
This approach requires that the relevant aspect.s of the world be continually
monitored.

A second approach to solving the frame problem is to check, when the
information is retrieved for use, that it is still vw.lid. Typically, this requires.
storing, along with the information itself, jome additional data about the
state of the world at the tinme the information was memorized. When the
information is retrieved, the stored state can be compared to the current
state, and the system can determine whether or not the information is still
valid. This approach requires that the relevant aspects of the world (such as
the current valite of the dollar) be anticipated and stored with the data.

Many other approaches are possible. If the system can determine how
the world has changed (e.g., by knowing the inflation rate), it may be able
to make appropriate modifications to restore the validity or the memorized|
inlformation (e.g., by converting the 1950 prices into 1980 equivalents).

Store-versus-compute trade-off. Since the primary goal of rote learn-
ing is to improve the overall performance of the system, it is important that
the rote-learning process itself does not decrease the efficiency of the system.

t _ ./
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It is conceivable, for instance, that the" cost of storing acid retrieving the
memorized information is greater than the cost. of recomputing it. This is
certainly the case with the multiplication of two numbers; virtually all com-
puters recompute the product of two numbers rather than store a large mul-
tiplication table.

There are two basic approaches to resolving the store-versus-compute
trade-off. One is to decide at the time the information is first available
whether or not it should be stored for later use. A cost-benefit analysis
can be performed that weighs the amount of storage space consumiied by
the information and the cost of recomputing it against the likelihood that
the information will be needed in the future. A second approach is to go
ahead and store the information and later decide whether or not to forget
it. This procedure, called elecetive forgetting, allows the system to determine
empirically which items of information are most frequently reused.

One of the most common selective-forgetting techniques is called the least
recently used (LRU) replacement algorithm. Each item stored in memory
is tagged with the time when it was last retrieved. Every time anr item
;s retrieved, its "time of last use" is updated. When a new item is to be
memorized, the least recently used item is forgotten and replaced by the new
one. Variations on this scheme take into consideration the amount of storage
required for the item, the cost of recomputing the item, and so on.
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B2. Rote Learning in Samuel's Checkers Player

SAMUEL conducted a series of studies (1959, 1067) on how to get a com-
puter to learn to play checkers. Among the earliest invwstigations of machine
learning, they remain some of the most succcssful both in terms of improved
performance (i.e., demonstrated improvements in the performance element)
and in terms of lessons for Al. His experiments with three different learn-
ing methods--rote learning, polynomial evaluation functions, and signature
tables-showed that significant improvement in playing checkers could be
obtained. This article focuses on his thorough analysis of the question of how
much rote learning alone can contribute to expertise and improvwd perfor-
mance. Other aspects of Samuel's work are discussed late, in Article XIV.D4s.

The Came of Checkers as a Performance Task

Checkers is a difficult game to play well. It is estimated that a full explo-
ration of all possible moves in che-kers would require roughly 10`3 moves.
S.mu,!1's program was provided with procedures for playing the game cor-
rectly; that is, thn' rules of checkers were incorporated into the program. He
sought to have the program learn to play well by having it memorize and
recall board positions that it had encountered in previous games.

At each turn, Samuel's program chose its move by conducting a minimaz
game-tree search (see Articles It*3 and 11.C5, in Vol. I). In principle, of course,
a program could try all possible moves and all possible consequences of each
move and thereby search the entire checkers game-tree. Such a calculation-
which is equivalent to playing every possible game of checkers-is not feasible
because the search space is too large. Every potential move by. one player
generally leads to many possible countermoves, each of which has still more
possible responses. The'resulting combinatorial explosion (see Article ILA, in
Vol. i) prevents any program from searching the whole tree. .

Consequently, the standard approach to conducting a game-tree search is
to search only a few moves (and countermoves) into the future and then apply
a static evaluation function to estimate which side is winning. The program
then chooses the move that leads to U'he best estimated position.

Suppose, for example, that at some board position, A, it is the program's
turn to move (see Fig. B2-1). The program searches ahead three moves
by considering first all possible moves that it could nmake, then all possible
countermoves available to its opponent, and finally all possible replies to those
countermoves. At this point, the program applies a static evaluation function
to estimate its net advantage at each or the board positions shown on the
right in the figure. These values are then "backed up" by assuming that
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Figure 132-1. An example of a mittimax game-tree search.

the opoonent will always take the move ýthat is worst for the computer (and
vice vcrsa). Thus, the be~t move for thc program is the one that lead~s to
position B. The program expects that Ltie opponent will countermove to C,
to which the programn can reply with D. The static evaluation function has
estimated the value of D to be 8, so thi- is the backcd-up value of position A.

Improving the Performance of the Checke \,i Playecr

There are two haiic ways to iimprov~ the performance of a game-trce
search. One method is to search farther~ into the future and thus better
approximate a full search of the tree. Thi~ is known ais improving Lthe look-
ahead power of the program. The other method i3 to improve the st~atic
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evaluation function, so that thec 361nat,,!t valuec of each board J)o~iitiofl i3 more
accurate. Samnuel's rote-Icarning 3tudie, -animed at im proving tile lonk-xhmea(1
power by memnorizing the backed-uip value~s of hoard positions. 'rie techniqjurs
discussed in A~ticle XIV.D~jL addrcss the problemn of improving thle evaluation
function.

.The rote-learning approach employod by Sarmu,e saved every board p, sqi-
tion encountered during play, along with its backed-up value. la the sittuation
shown in Figure 112-1, for instance, Sanitiel's programn would inernorize the
description of board position A and its backed-iip value of 8 as an aas:50mated
pair, [A,8$J. When position A is encountered in subsequent, gamnes, its evalua-
tion scorc is retrieved from memory rather than recomputed. rThi3 makes thc
programi more cillicient, because it does not have to compute thle value for A
with the static evalution function.

There is a more important benefit of retrieving the backed-up value of
A fromn memory, however. The inemorized value of it is more accurate than
the static value of it, because it is basecd onl a look-ahead search. '[linus,
the look-ahead power of the programn is im proved. Figure 32 -2 shows an
example of this improvement. The programn is considering which move to
make at position E. It searches ahead three mnoves and then applies the static
evaluation function. For position A, however, the programn is able to retri,ývc
the memorized value based on the previous search to position 1).

This appro .:h urn proves the effective search depth for E. As more and
more positions are memorized, the cffe~ctive search depth imnproves froin its

Figure 132-2. Improving look-ahead powecr by rote learning.
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original value of 3 moves, up to 6, then to 9, and so on. Rote learning is thus
used in Samuel's program to save the results of previous partial game-tree
searches, so that they can gradually be exter.ded and deepened. Rote learning
converts a computation (tree search) into a retrieval from memory.

MemorV Organization

Sw -lei employed everal clever techniquces to store the evaluated hoard
positions, -,o that they took iip little space and coold be retrieved rapidly. To
store the positions compactly, Samuel took advaittage of Several symmetries
(e.g., positions in whici it was Rcd's turn to move were converted into the
corresponding Black-to-move positions; king positions Are symmetric in two
ways). Efficient retrieval was accomplished by ifdiexing the boards .According
to many different characteristics (including the nuniber of pieces on the board,
presence or absence of kings, and piece advantage) and writing them onto
a tape in the order they would most likely be needed during a game. The
use of magnetic tape was necessary because the program was running on a
relatively small IBM 704 computer, and only a few board positions could oe
kept in the computer's core memory. During rote learning, the program would
accumulate a number of board positions before reading, sorting, and rewriting
them onto the memory tape.

Samuel resolved the store-versus-compute tr.de-of" with a variation of
least recently used (LRU) replacement. Each board position was given an age.
Whenever a position was retrieved frorn memory, its age was divided by 2.
When the memory tape was rewritten, the ages of all stored positions were
increased by 1, and very old positions were fcrgotten -that is, not weitten
back onto tape.

Results

The program was trained in several ways: by playing against itself, by
playing against people (including somne checkers masters), and by following
published games between master players (so-called book games). After train-
ing, the memory tape contained roughly 53,000 positions. As the program
learned more, it improved slowly but steadily, becoming, in Samuel's words, a
"Trather better-than-average novice, but delinitely not ... an expert" (Samuel,
1959, p. 218). Success in learning varied markedl) depending on the phase of
the game. The program became capable of playintg a very good opening game,
since the numbler of board variations is relatively .omall near thiv start of tLe
game. lerformance during the midgame, with its far greater range of possible
configurations, did not greatly improve with rote l'arning. During the end
game, the program became able to recognize winning mnd losing positions well
in advance, but it needed some improvement before it was able to force the
game to a successful conclusion (see below).
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On the whole, Samuel's experiments demonstr.ated that significant and
measurable learning can result from rote processes alone, bult that on its own,
re-! learning is limited in several ways. The first and most obvious limitation
is in storage space wid retrieval. One question that interested Samuel is the
following: If rote learning produces steady improvement of performance as
it gathers new positions (up to a limit determined by %vailable space and
the efficiency oa indexing algorithms), could it ever reach a performance level
considered expert before exceeding the storage and indexing limits? If so, how
much data would it need tw remember, and how long would it take to gather
.,he data?

Samuel estimated that his progr un would need to nmemorize about one
million positions to approximate a mat-r level of checkers play. Unfortinately,
even a system with sufficient storage capacity and rapid retrieval methods
would require an impractical anmo,!nt of machine playing in order to gather a
million useful positibns. However, Sa:uuel suirgcsts that even this long acqui-
sitio-, period would be shorter than the time taken by humanru to improve
from complete beginners to masters.

The inability of the program actually to effect a win once it had - winning
position was a curicus problem. It was caused by the mesa effect (Minsky,
1963)-that is, once the prograim has found a'winning position, all mtcves
look equally good, and the progran. tends to wander aim'le•sily. Samuel solved
the problem by storing, along with each board position and value, the length
of the search path that was used to compute the board value. The move-
selection procedure was modified to seLct the bt-st move that also had the
shortest associated search distance. This change gave the program a sense of
direction, so that it was able to press forward to win the game (or stall as
much an possible to avoid losing a game).

Another interesting problem arose when Samuel attempted to combine
rote learning with learning techniques that modified the static evaluation func-
tion. Unfortunately, changes to the evaluation function tended to invalidate
previously memorised positions (see Article XIVBI, on the frame problem).
Samuel's solution was to avoid this problen by postponing rote learning until
the evaluation function had been effectively learned.

Concluuion

Besides showing that real improvement of performance could be gained
by the conceptually simplest form of iearning--rote memorization-Samuel
identilied and elaborated several issues tU,-1t need to hc handled if rote is
to offer significant gains. In general, the value of rote learning is to gain
problcm-solving power in the form of spced. By retricving the stored results
of extensive computations, the program can proceed deeper in its reasoning.
The price is storage space, access time, and effort in organizing the stored
knowledge.
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Samuel found that tor rote learning to be effective, knowledge had to
be carefully organized for efficient retrieval, stabilized to avoid using values
whose meanings had changed, augmented with search-depth information, and
selectiveiy forgotten so that only the most useful information would tend to
be saved. In the case Df Samuel's checkers player, rote learning may have had
enough power on its own to lead eventually to expert performance, but the
time and space required for that much improvement were beyond the available
resources.

References

Samuel (1959) describes the rote-learning research in detail.
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C. LEARNING BY TAKING ADVICE

C1. Issues

IN ONE of the carliest Al papers on learning, McCarthy (1.958) proposed the
creation of an advice-taking system that could accept advice and make use
of it to plan and execute actions in the world. Until the late 1970s, however,
there were very few attempts to write programs that could learn by taking
advice. The recent emphasis in Al on expert sviteCis has focused ne% attention
on the problem of converting expert advice into expert performance (see Barr,

Bennett, and Clancey, 1979).
Research on advice-taking systems has followed two major paths. One

approach has been to develop systems that accept abstract, high-level advice

and convert it into rules that can effectively guide the performance element.
This research seeks to automate all phases of the advice-taking proceu. The
other approach has been to develop sophisticated tools-such as knowledge-
base editing and debugging Aids--that make it casi-r for the expert to trans-
form his own abstract expertise into detailed rules. In this second approach,
the expert is an integral part of the learning system, detecting and diagnosing
bugs and repairing and refining the knowledge base. The former approach
shows promise of eventually developing completely instructable systems, while
the latter approach has proved invaluable for creating knowledge-based expert
systems. This article describes both of these research paths. We will discuss
the more highly automated approach first and return later to the research on
knowledge-base, editing and debugging aids.

Steps for Automatic Advice-taking

Ilayes-Roth, Klahr, and Mostow (1980, 1981) provide an outline of the
processes required to convert expert advice into program performance. This
outline can be summarized as follows:

1. Request-request advice from expert,

2. /nIterpet-assimilate into internal representation,

3. Operationalize -convert into usable form,

4. integrate -integrate into knowledge base,

5. Eluzate-evaluate resulting actions of performance element.

Request. The first step is for the program to request advice from the

expert. The request can be simple-just asking the expert to give some

345
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gereral advice --or it cli bie siijjliucstiiid -irtf'ig.1 ýhoctcore'iot, in the
k no. lýIedgI e base aind LAs ii n th,0e ex pert, howv ., re air it. .. onic systeijis are
coripletoly pia&ive and -iimply wait for the vxpert to) iiitorrilpt tleicn and
providle adivice, while 'ithoi rare ve ry caret ii to nina,. the! attent~iofl of the
expert err a particular prohlicin.

Interpret. The fiixt step in .md% icc-taM-ii is to ýicclit the adv ice and

represent it in ternially. MIc( 'Lrth ( P),8)) pouttPt ),it Lh.Ut n order for i programn
to accepI)t ItdV ice, t I I pro- rantr Titilst Iti~te itan; ti br 77ttn'iilIcIU j ad qIlaL, rep re-
sentation for the advice isce .\rtrichn tI~cI ini Nol. 1, i hit i~s a representation
that is capable of cxpr'saiinig thio advice %%ittiorit lo~mrg any tioritiation. T163ii
interpretation step Call be very fil~licidt if the advice is ,liveni in a natural Ian-

gtuage. The program in ii iriiunerst.mrrd lie nakturalliid g suilficiently well
to convert it into in miiibiiituiotis inrireira r-prest-iit.itioir. Scee Chapter IV,
in Voliimre 1, for a detolileul survey of AI research into natural-languageL~ under-
standing.

Operationnflize. Once the advice hais beeni accepted and iaitfrpreted into
-an unambiguous rep resen tationI, it still miay inot be direrlt v executable by the
performnaiice element. T he third tp- ucrai ai~im -seeks to brid~ge the
gap between the level *it w blchI the ,dvicc is providuedl anid the level at which
the performance elemrent can apply it.

Mostw (181)pru'amn F00, for uxatinple eac cepti a d vice aboli t how to
play the card ganie of IHearts. Eg b-Iiuaead vice. -in cl as "Avoiid taking
points." is interpreted by FOO's hum an user mnd given to the program as
the lamnbda-calculu is stal~ciirerit iAVOlt) ("IAEE -t'Gii ITS Nil) it tlI,*NT TRItCK)).

Hlowever, even thoug~h thi3 advice firas beeni irterpuetenv into an iinarri big.uous
internal representation, it is still niot op ramtionni ,iinci, FOt) has rio, proced ures
or niethods4 to avoid tak inrg points. F0O0 lots have miethods for ýselvctinrg arid
playing cardis. however.- Thi u, the advice mu tst be coriveruted int o a form, such
as 1A(IIIEVE (L.OW. (CARDI OF~ ME))) (i.e., "P'lay a low card'"), that requires onrly
these 'operations.

POO accomnplishes th1ris task by tp plying many di fteremut op-rationalization
methods (See Article XIVAC2). It tries to re-express- the advice, using known
relationships, until it can recornize that one, of iti operatiorralization methods

is applicabile. Therse methiods then allow it to) develop at procedurire for carry iing
out all or part of the advice. The steps of reformul1ating, tLe advice and apply.-
ing operationalizatiort methods. are repeated intil Ithe advice is Comrpletely
cxecrn table.

vhiis. process is -rimidar to the approach taken try aititoriai~tic-progrmmrningiii
systems b-at convert bitlude(velprokram spen'ficlncmiors into0 n'iieriet hr plemren-
tationns (see Chap. x, irr Vol. 1). H owever, tinliikot those systeirns, whinch seek to
create p)rovab~ly correct. programns, GOO is tint. 'nolprool'. Tlhie gap betwoeni the
adivice amid thme perform~ancre elerinent is usuially trio v.ide. anid I lie operatiorrali-
zation methods are tisually too weak, to pernnit; error- free oncratiomualization.
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For example, it is often necessary for FOO to make assumptions and approx-
imations in order to transform the advice. FOO cannot always successfully
"avoid taking points" in Hearts, since it is impossible for the program to know
the contents of its opponents' hands. Instead, FOO applies heuristic methods
to reduce the likelihood that points will be taken. Its strategy of playing low
cards is, consequently, a tentative hypothesis about how to avoid taking points.
The tentative hypotheses developed by operationalization must be tested and
debugged before they can be accepted.

Integrate. When knowledge is added to the knowledge base, care must
be taken to see that it is properly integrated (see Article XIV.A). New advice
can result in new mistakes if it takes precedence over previoas knowledge in
situations in which the old knowledge is still correct. Yet the new advice must
take precedence in the inten~ded situation, The learning program must know
enough about how the performance element applies the knowledge to be able
to anticipate and avoid any bad side-effects that could result from adding the
knowledge to the knowledge base.

Two common problems of integration are (a) overlapping applicability
and (b) contradictory recommendations. Consider an expert system, such as
MYCIN, whose knowledge base is represented as a set of production rules.
When a new rule is added, its left-hand side (or condition part) may be overly
general, causing it to trigger in situations in which some other rule is properly
applicable. One solution to this problem is to specialize the rules, so that this
overlap of applicability no longer occurs. Another approach-the meta-rule
approach-is to add ordering rules (meta-rules) that explicitly indicate which
regtilar rules should be applied before others.

When the right-hand sides (or action parts) of two production rules recom-
mend inconsistent actions in the same situation, the problem of contradictory
recommen-4ations arises. Again, either the right-hand side' - be modified
to remove the contradiction or a meta-rule can be added U• indicate which
action should take precedence. There are many other integration problems
aside from these two typical ones.

Evaluate. Since the new knowledge received from the expert is only
tentative-that is, it is the result of interpretation, operationalization, and
integration-it must be evaluated somehow. The learning system may be able
to recognize some errors and inconsistencies in the advice when it integrates
the advice into the knowledge base. More fiequently, however, it is necessary
to test the advice empirically by actually employing it to perform some task
and then assessing whether the system is working properly.

Evaluation requires some performance standard against which the actual
behavior of the system can he compared. In some domains, the performance
standard can be built into the program. Game-playing programs, for example,
cant tell if the system is doing well by whether or not the system wins the game.
In other domains, however, the system needs to set up detailed expectations

J.• : \ ,...... /N,
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about how the new knowledge will affect the performance oF the system. These
expectations allow the program to detect and locate bugs in the knowledge
basp.

EvalLation can naturally feed back into the request step (the first of
these five steps). When the program detects that the performance element
is not functioning properly, it can announce this to the expert and request
additional advice. A more sophisticated approach is For the program to do
credit assignment-that is, to determine which parts of the -knowledge base
are incorrect. Once the bug has been located, the advice-taking system can
ask the expert to tell it how to repair the particular piece of knowledge that
is incorrect.

Now that we have discussed the five basic steps in an advice-taking sys-
tem, we describe some systems that have been developed as aids for creating,
modifying, and debugging large knowledge bases.

Aids for Knowledge-base Maintenance

Instead of fully automating. these five steps, many researchers working
on expert systems have built tools for assisting in the development and main-
tenance of expert knowledge bases. EMYCIN (van Melle, 1980; Davis, 1976), -

AGE (Nii and Aiello, 1979), and KAS (Reboh, 1981), for example, all provide
certain functions to assist a domain expert or knowledge engineer in carrying
out these five steps. Particular assistance has been provided for integrating
new knowledge into the knowledge base (intelligent editors, Ilexible repre-
sentation languages) and for evaluating and debugging the knowledge base
(explanation and tracing Facilities). This semiautomated approach to advice-
taking places the knowledge engineer in the role of requesting, interpreting,
and operationalizing the :xpert's advice.

To wssist the knowledge engineer, these systems must be able to com-
municate effectively. It is particularly important for the engineer to get good
feedback from the system (luring testing and debugging. Thus, a great deal
of effort has been expended on the development of tracing and explanation
facilities for expert systems (see Article vii.B, in Vol. It; Davis, 1976).

Conclusion

Research on advice-taking systems is still in its infancy, although impor-
tant ideas and methods are available from the related areas of natural-language
understanding and autottntic programting. Present research is advancing
along two paths: the theoretical path of automatic operationalization of expert
advice and the practical path of providing aids to help knowledge engineers
build and debug expert systems. The developmeut of fully automatic systems
remains an active research area.

/"

- -
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A few Al systems have been developed that perform some kind of advice-
taking. Moetow's FOO system is described in Article XIV.C2. The reader
is also directed to the articles on TEIRESIAS (Article VII.B, in Vol. 11) and on
Waterman's poker player (Article XIV.D~b) for other examples of advice-tal'ng
systems.

References

Davis's work (1976, 1978) describes pioneering efforts in interactive advice-
taking. Hayes-Roth, Klahr, and Mostow (1981) and Mostow and [laycs-Roth
(1979) present the most comprehensive analyseu of advice-taking as a whole.



C2. Mostow's Operationalizer

A GROUP of researchers at the Rand Corporation, Carnegie-Mellon University,
and Stanford University has recently been developing the machine-aided
heuristic programming methodology in which a computer would be instructed
to perform a new task in much the same way that a person is taught (see hayes-
Roth, Klahr, Burge, and Mostow, 1978; Hayes-Roth, Klahr, and Mostow,
1981). A central effort in this project is understanding the problem of opera-
tionalization (see Article XIV.Ci). Mostow's program 100 (First Operational
Operationalizer) is one of the first results of this work. It investigates prin-
ciples, problems, and mctliods involved in converting high-level advice into
effective, executable procedures.

Accepting Advice About the Game of Ifearts

Mostow, in his research with FOO, has dealt primarily with operationaliza-
tion problems taken from the card game of Hearts. The game is played as a
sequence of tricks. In each trick, one player-who is said to have the lead-
starts the trick by playing a card and each of the other players continues the
trick by playing a card during his (or her) turn. If he can, each player must
follow suit, that is, play a card of the same suit as the suit led. The player
who played the highest valued card in the suit led takes the trick and any
point cards contained in it. Every heart counts as one point, and the queen
of spades is worth 13 points. The goal of the game is to avoid taking points.
Ilayes-Roth et al. (1978) provide a more complete explanation of the game.

Hearts is a game of partial informationi, with no known algorithm for win-
ning. Although the possible situations in the game are extremely numerous,
beginning players oftcn hear general advice such as "Avoid taking points,"
"Don't lead-a high card in a suit in which an opponent is void," and "If an
opponent has the queen of spades, try to flush it." The task of the FOO
program is to take such general advice and render it directly applicable by a
performance program. This task can be viewed as a kind of planning task.
A piece of advice, such as "Avoid taking points," can be viewed as a goal.
The operationalization program must develop an executable plan for achiev-
ing that goal. What makes this advice difficult to operationalize, however,
is that the goal can he ill-delined and unattainable. It is impossible, for
example, always to avoid taking points. Instead, the program must develop
approximate strategies. The advice-giver intends the goal to suggest, but not
specify, the desired behavior.

FOO is not able to accomplish this advice-taking task unaided. First,
it does not perform the interpretation step at all but, instead, relies on the

:350
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user to translate the English form of the advice into an unanr ,uous lambda-
calculus representation. Second, P00 cannot rerform the operationalization
step without human assistance. Although P00 has a large knowledge base
of transformation rules and an interpreter for applying those rule, it must
be told by the user which rules to apply. The user must operate FOO by
repeatedly selecting an appropriate rule and indicating which expression or
subexpression should be transformed. Finally, O0 does not integrate the
operational knowledge it develops into a knowledge base that could drive a
Hlearts-playing program. No performance element has been developed that
could provide an empirical test of the operationalized knowledge. Despite
these shortcomings, Mostow's work on P00 provides an in-depth analysis.of
the techniques required to perform operationalization.

The primary way in which advice is operationalized in P00 is b." applying
operationalization methods, such as heuristic search, the pigeonhole principle,
and finding necessary or sufficient conditions. Mostow claims that this is
precisely what knowledge engineers and Al researchers do when they are
faced with a new problem to solve: They look in their bag of tricks for
a method, such as worst-case analysis, that allows them to construct an
effective, btt inefficient, program. This program can then be further refined
by applying other knowledge and advice. Mostow's work can thus be viewed
as formalizing the knowledge and techniques used by A] researchers to do
heuristic programming.

The most sophisticated of FOO's operationalization methods is the
heuristic-search method. When POO needs to evaluate a predicate, such as
(TAKE-POINTS ME), over a sequence, such as the sequence of cards in a trick,
it is able to reformulate this problem as , heuristic search of the space of all
possible tricks. POO starts with a basic generate-and-test algorithm (discussed
in Article It.A, in Vol. 1) and refines it into it heuristic search by improving the
ways the algorithm (a) selects the next node to expand, (b) selects possible
expansions of the node to apply, (c) prunes nodes from the search tree, and
(d) prunes possible expaniions prior to applying them. The overall effect of
these refinements is to move constraints from the test portion of the algorithm,
that is, the step that checks to see whether the goal has been achieved, into
the generate portion of the algorithm, --that-is, the step that chooses which
nodes to expand and how they should be expanded. Some refinements actu-
ally move constraints out of the search altogether by precompiling them into
tables or by modifying the algorithm to search a smaller space.

In the "Avoid taking points" problem, for example, P00 starts -with a
simple gcnerate-and-test algorithm that generates all pos.ible tricks and tests
to see if MIw ("OO's performance persomn) takeis any points. This is gradually
converted into a heuristic search in which the only tricks considered are those
in which ME plays a card higher than any card played so far in the suit
led. Additional heuristics, such as generating tricks that contain points first
and pruning tricks in which the opponents play cards higher than ME, are
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extracted from the test and applied earlier in the search to order and prune
the search tree.

Underlying all of FOO's operationalization methods is its basic ability to
reformulate an expression in many different ways. For example, in order to
evaluate (VOID PI SI) (i.e., player P1 is void in suit Si), FOO must reformulate
VOID in terms of observable variable. such as the number of cards already
played in the suit St. In order for ,OO to recognize that an operationaliza-

tion method is applicable, it must often do some reformulations. Then, in
order actually to apply the method, POO may need to do some further refor-
mulations. The heuristic search method, for instance, is applicable only to
a problem that is expressed as a search through some space. Consequently,
in order to use heuristic search to operationalizc the "Avoid taking points"
advice, FOO must first reformulate the advice as a predicate over the search
space ,,f all possible tricks. The heuristic search can then search this space
for those tricks that do not contain points.

The reformulation and operationalization process is accomplished by ap-
proximately 200 transformation rules (Mostow, in press). These rules employ
analysis techniques and domain knowledge to successively reformulate the
advice into an operational form. In this article, we trace a portion of FOO's
operationalization of the "Avoid taking points" advice to show how these
reformulation techniques are applied. Before doing this, however, we describe
the knowledge that IOO has initially and how it is represented.

FOO's Initial Knowledge Base

FOO's performance knowledge is made up of domain concepts, plus rudes
and heuristics that are composed in terms of these concepts The advice
offered to the program likewise consists of domain concepts, plus composi.
tions of concepts. Sa as long as these compositions of basic concepts can
be described in general ways, both the performance knowlcdge and the ad-
vice for building and improving it can be used and manipulated by domain-
independent methods (see [ayes-Roth et al., 1981, for further discussion).

For example, in the domain of the card game Hearts, basic concepts
include:

deck, hand, card, suit, spades, deal, round, trick, avoid, point,
player, play, take, lead, win, follow suit.

Examples of advice in the form of behavioral constrainti include:

The lead of the first trick is by the i;layer with the 2C.

Each player imist follow suit if possible. I
The player of the highest card in the suit led wints the trick.
The winner of a trick leads tht. next trick.

Advice in the form of heuristic, includes:



C2 M1-ostow's Opcrationalizer 353

If the qitcen of spades has not beefi played, then glush it out.
Take all the points in a round.
If you can't take all the po~nts in a round, then take as few

as pcssible.
If necessary, take a point to prevent someone else from taking

them all.

A constraint such as "The lead of the first trick is by the playcr with the 2C"
is represented as a composition, using dnrnain-indcpendent concepts like first
and wjith and domnain-depcrident concepts like lead, trick, playier, and 2C.

An Exarmple: Operationalizing "Avoid Taking Points"

After advice has been i.;terpreted into an intcrnal reprcsentation that is
precise and unambiguous, it might be in ain operational form, for example,
"Play a low card." On the other hand, it may be far more general: "Akvoid
taking, points." Experienced Hlearts players will recognize that the first,
specific piece of advice is a p)ossible strategy For carrying out the latter, gencral/
advice. But it is a rather simplistic strategy, more appropriate for the later
stages of a game than for the bcginaiing. Furthermore, repeated attempts
to play low cards will sometimes conflict with other advice. F~or purposes of
illustration, however, operatiorializing even a quite simple goal can require a
wide range of knowledge anid mnethods (see Nlostow, 1981; Ilayes-Roth et al.,
1MI). For the remainder of' this article, several of the methods and problems
or' operationalization will be illustrated by showing how advice Suich as this
can be converted into directly executable procedures.

First, -,ormsider how a person might handle advice such as "Avoid taking
points." lie might. apply it to a specific situation by reasoning as foliows:

I. To avoid taking points in general, I should avoid taking any points in the
current trick (a single round in which oen card is played by each player).

2. Thug, if toe trick contains points (either a heart or the queen of spades),
I should try not to win it.

3. 1 cal do0 this by trying rint to play the winning card.

41. That can be done by mny playing a card lower than some other card--
played in the suit led.

Each step above is an attempt to implement the previous statement as closely
as possibleý hy restatement ini successively [more specific, operational terms.
Some restatemrents rmay fully preserve the truith or accuracy of the previous
onec, while otie~rs may be very surppositionmal (i.e., valid given certain :ui.sump-
tions,) or mtore restrictive (i.e., valid oniy ii, certain situiations). The final
statement abnove is not a very sophisticated plani, but it is at least a reasonable
operationmalization of the initial advice, and it represents a kind of process
that seemis very common in humnan !learning. A problem-reduction strategy is
employed until the advice can be applied directly in the given situation.
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Now that we have a sense of how a person might operationalize "Avoid.
taking points," we trL -e the methods applied by FOO to accomplish this task.
The following example is based on Derivation 6 in Mostow (1981) in which
he guided FOO to reformulate "Avoid taking points" as "Play a low card."
This particular trace shows the use of several simple operationalization and
reformulation methods but does not show the application of the heuristic-
search method discussed above.

To begin with, the advice must be interpreted into a tractable repre-
sentational form, such as:

(avoid (take-points me) (trick))

That is, "Avoid the event in which ME takes points during the current trick."
In FOO, this is done manually by the advice-giver.

A useful beginning in operationalization is to elaborate the original advice
by expanding definitions (first of "avoid" and then of "trick"). The point is to
unfold high-level terms so that. thi. expression can be more easily manipulated.
The results arn

(achieve (not (during (trick) (take-points as)))]

and
(achieve (not (during (scenario

(each p (players)(play-card p))
(take-trick (trick-winner))]

(take-points me)))).

The advice in this form is still not operational, since it depends on the
outcome of the trick, which is not generally knowable at the time ME needs
to choose an action in accordance with the advice. Therefore, a case analysis
is done on the subexpression (during...). The idea is to reformulate a single
concept as several disjoint expressions that can be evaluated separately. To
this end, the single (during...) expression is split into two expressions that
depend on alternative assumptions. Hlere, taking points during the two-part
"scenario" above can be considered as either of two possible cases: that taking

... . . points occurs during (a) the playing of cards or (b) the taking of the trick.
The transformation results in:

(achieve (not (or [during (each p (players) (play-card p))
(take-points me)]

[during (take-trick (trick-winner))
(take-points me)]))).

The next transformation elimimates impossible cases. When expressions
cannot be achieved because of impossible conditions, the learnie should recog-
nize this and drop tltie from consideration. Here, the first case can be ignored
becau.sm-tAetf ino way to take points during the play of the cards (it is
possible only after all players have played, when the trick is taken). FOO
recognizes this by an intersection search. It searches through the knowledge

.I I
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base of defined concepts for a common subevent of the two events (each p
(players) (play-card p)) and (take-points me). Since no commqn subevent
is found for these two, FOO concludes that the situation is an impossible one
and eliminates it. (For the second case, take-trick and take-points have a
common sub-event, take.) The advice now is:

(achieve (not [during (take-trick (trick-winner))
(take-points e)1])).

The advice is still far from operational. One difficulty is that neither
take-trick nor trick-winner is immediately evaluable at the time a card must
be chosen for play. At this point, the problem can be reduced by reexpressing
different concepts in common terms. This is possible here by again elaborating
definitions and restructuring the subexpressions. Since take-points occurs
during take-trick, the expression can be reformulated as:

(achieve (not Cexists ci (cards-played)

(exists c2 (point-cards)
(during (take (trick-winner) cl)

(take se c2)))])).

This says, "Make sure the !,ituation does not happen where Mu, takes a point
card (c2) during the time that tihp winner of the trick takes the cards played."

A orocess of partial matching recognizes that the two events in the during
subexpression are closely related and thus are candidates for simplification,
depending on the constraints of the during predicate. Using domain knowt-
edge of relationships among the concepts, the terms can be combined and the
subexpression made less complex. Instead of the complicated relation during,
the events become joined by the far simpler predicates = and and. We now
have:

(achieve (not (exists cl (cards-played)
(exists c2 (point-cards)

Eand (= (trick-wir.ner) me)(= ct c2)])))).

Further analysis at this point shows that simplification of some forms is
possible. The central purpose of searching for simplifications is to restructure
expressions to make them more amenable to further analysis. Examples of
simplifying methods are deleting null clauses from a disjunction, transforming
an expression into a constant (by evaluation), applying logical transformations
(such as De Morgan's laws), or removing quantifiers when possible. The last
of these methods is appropriate here, since ci and c2 denote the same object:
a point card. Thus with some reformnulation employing donmin knowledge,
one variable can be replaced by the other, and the condition that they be
equal can be dropped. The expression is transformed into:

(achieve (not [and (a (trick-winner) me)

(exists cl (cards-played)
(in cl (point-cards)))D).
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Another kind or pattern-matching cin accomplish another kind of simr.-
plification: By looking for canonical constructions, the operation '.izcr can
recognize knoum coneepta. If the form of a lower level expression fits the
definition of a higher level concept, the former can be replaced by its simpler
equivalent. (Note that thL- is the inverse of the first transformation mentioned
above: expanding definitions.) In this case, the last two lines of the above
expression match the delinition of trick-ham-points. This is analogous to the
psychological process of chunking. In addition to all the analytical advantages
gained by simplilication, the recognition of known concepts can also enable
the application of previously learned knowledge about them (e.g., ways to
predict the likelihood that a trick will have points in ti). Our expression is
now reduced to not winning a trick that has points:

(achieve (not, (and (z (trick-winner) me) (trick-has-points]))).

The expression is still not operational, since trick-winner is not gvnerally
knowable at the time of choosing which card to play. The concept of trick-
winner ij further analyzed, and, in fact, it takes about 20 further tran.sforma-
tions to reformulate the above expresion, "Try not to win a trick that has
points," into "If you're following suit in a trick with points, try to play lower
than some other card played in the suit led." Symbolically, this looks like:

(achieve (-s (and (in-suit-led (card-of me))
(trick-has-po tnts) ]

(lower (card-of me)
(find-element (cards-played-in-suit-led))])).

But this still is not operational, since in general the set cards-played-in-
suit-led is not fully known at the time that mE must choose a car(l. Since
Hearts is a game of imperfect information, this set cannot gener:ally be known,
but the data available (cards already played) can be used to approximate the
re.ult. Here, the binary relation lower is approximated by the unary predicate
low. In other words, in the absence of complete information for evaluating a

----- ct omparative-predicate (lower it z2), use instead an estimating function (low
zi) that may not be exact but can produce a result front the available data.
The approximation is:

(achieve (-s (and (in-suit-led (card-of me))
(trick-has-points))

(low (card-of me)])).

This is now very close to being operational. Low is an imprecise term but
can he treated as a ft.-"j predicate (see Zadeh, 1979)--that is, it could be
used to order potential candidates for the choice variable, card-of me.

The only remaining barrier to full operationality is the predicate (trick-
has-points). Tlii: tlso is not always knowable at the time of choosing a
card to play.. However, further analysis leads to applicat,•n of a rule that
formulates an assertion as possible (effectively assuming it to be true) in the
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absence of any knowledge to the contrary. Even when a prcdicat-! p is not
evaluable, (possible *p) will l'e.

Thus, the fully opcraktonal (though approximate) reformulation of' the
original "Avoid taking points" is "If following ituit in a trick that may have
points, play a low card." Again, the result may not always be thle most effective
action and may be in conflict. with other advice. These are issues to be decided
by the evaluating module of the learning dcrn'nrt and by the performance
element of the program. Thle symbolic form of the operationalized advice is:

(achieve (=> (and (in-suit~-led (card-of me))
(possible (trick-has-points)1]

(low (card-ol me)])).

Conclu~sion

The example given above is a useful one because of the diversity of its
reformnulations, not becauhe o' any completeness. Among the most Useful
contributions of this research has been arn introduction to the considerable
complexity of operationalizing advice. Of Lthe 13 examples of operationalized
advice given in Mostowis thesis (1981), a couple required only a handful of
transformations (a minimum of 8), but several required over 100. About 10 f
domain-independent transformational rules were mentioned in the example
above, but ovcr 200 such rules have been formulated and incluiled in the syi-.
tem. Mostow (1981) gives a taxonomy of opcreationalizatiorr methods accord-
ing to their purpoae, spope, and accuracy. This taxonomy is outlined in
Figure C2-1; each category is illustrated by one or more methods.

The greatest shortcoming of the work on FOO is the lack of a control
structure that could apply these operational ization methods automnatically.
The development of sujch a control regime may be quite difficult. Mostow
suggests using means-enids analysis (see Article [I.D2, in Vol. 1) and describes
how his execution of rules oft~en conformed to the foliowing pattern:

1. Reformulate an expression until it is po~ssible to
2. recolnize that the method is applicable and decide to apply it, so
3. reformulate th,- expression to match tile method problem s-.tatement and
4. fill in addi,'onal information requited by the method; then,
S. refine tha instantiated method by applying additional domain knowledge.

A second shortcoming of FOO is that its incthods are quite specific to the
game of Hearts and ,iimilar tasks. vThe development a~ a general-purpose
operationalieatioi, program will require Lthe explication of many more opera-
tionalization methods. Still, these First steps in operationalization should
prove valuable either for Lthe overall project of machine-aided heuristic pro-
gramming (see thle beginning of this article) or for future efforts at ~Inpleniont-
ing advice-taking Systems.
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1. Methods for evaluating an expression

a. Procedures that always produce a result (assuming the'r inputs
aire available)

"-Pigeonhole principle"
'Hist~orical teasoning
"H euristic search'

b. Procedures '.hat sometimes produce a result
"Chock a necessary or sullicient condition"
"-%ake a simmplifying aassumption that restricts the scope

of applicability"

c. Procedures that produce an approximate result
"A\pply formula for proh~ability that randomly chosen

subSets overlap"
"Characterize a qu'.ntity as an increasing or decreasing

function of -some variable"
"Use0 an unttsted simplifying assumption*
"P~redict others' choices pessimistically"

2. Methods for achieving a goal,

a. Sound methods (introduce no errors) -execu tion of plan (when
feasiblc) will achieve goal

"To empty a set, remove one element at a time'e
"Find a suffc~ient cotidition and achieve it
"Restrict a choice to satisfy the goal"
"Modifiy a plan for one goal to achieve an additional goal"
"To achieve a goal with a future deadline, satisfy it now

and then avoid violating it"

b. Heuristic rncthods-execution of plan may not always
achieve goal

"Simplify the goal by arbitrarily choosing a value for
one of its variables"

"Find a neceseary condition and achieve it"
"Carder choice set with respect to goal"

Figure C2 -1. Taxonomy of operatiauialization mecthods.
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Reference.

Mostow (1981) is the most comprehensive description ot FOO. The arti-
cles by Ilayes-Roth, Klahr, and Mostow (1980, 1981) and by Hayes-Roth,
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machine-aided heuristit programming. Mostow (in press) describes the work
on heuristic search.
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D. LEARNING FROM EXAMPLES

Dl. Issues

T1IE PROSPECT of creating a program that can learn from examples has
attracted the attention of Ul researchers since the 1950s. McCarthy (1958,
p. 78) said, "Our ultimate objective is to make programs that learn from their
experience as effectively as humans do." Of course, the attainment of this goal
still lies in the distant future. The area of learning from examples is, however,
the best understood aspect of learning.

A program that learns from examples must reason from specific instances
to general rules that can be used to guide the actions of the performance
elem ,it. The learning element is presented with very low level information,
in the form of a specific situation and the appropriate behavior for the per-
formance element in that situation, and it is expected to generalize this infor-
mation to obtain general rules or behavior.

Consider, for example, a program that is learning to play checkers. One
way to train the program is to present it with particular checkers-board
situations and tell it what the best moves are. The program must generalize
from these particular moves to discover strategies for good play. Similarly, if
we are teaching a program the concept of a doy, for example, we might present
the program with various animals (and other things) and tell it whether or
not they are dogs. The program must develop general rules for recognizing
dogs and distinguishing them from everything else in the world.

Sim-in and Lea (1974), in an important early paper on induction, describe
the problem of learning from examples as the problem of using training
insi.ances, selected from some space of possible instances, to guide a search for
general rules. They call the space of possible training instances the instance
space and the space of possible general rules the rule space. Furthermore,
Simon and Lea point out that .n intelligent program might select its own
training instances by actively searching the instance space in order to resolve
some ambiguity about the rules in the rule space. Thus, if the program were
unsure whether all dogs have four legs, it might search the instance space for
animals with different numbers of legs to see which ones are dogs. Simon and
Lea view a learning system as moving back and forth between an instance
space and a rule space until it has converged on the desired rule.

This two-space view of learning from examples as a simultaneous, coopera-
tive search of the instance space and the rule space is a good perspective for
organizing this article. We will use the terms instance space and rule space
even in situations waere the rule space d..'es not contain rules but, instead,
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Experiment Planning
S~~Instance Selection •.

Figure DI-1. The two-space model of learning from examples.

from the form of the rules in the rule space. As a kesult, when the program
moves from the instance space to the rule space, spccial processes are needed

to interpret the raw training instances so that they can guide the search of the
rule space. Similarly, when the program needs to gather some new training
instances, special experiment-planning routines are needed so that the current
high-level hypotheses can guide the search of the instance space.

As an example of the two-space model, consider the problem of teaching
a computer program the concept of a flus/h in poker (i.e., a hand in which all
five cards have the same suit). The instance space in this learning problem is
the space of all possible poker hands. We can represent an individual point
in this space as a set of five ordered pairs, for example,

{((%clubs), (3,clubs),. (5,clubs), (Jaekctubs), (king,cluba)}.

Each ordered pair specifies the rank and suit of one of the c~rds in the hand.
The entire instance space is the space of all such five-card sets.

The rule space in this problem could be the space of all predicate calculus
expressions composed of the predicates SUIT and RANK; the variables cl, c2,
C3, C4, CS for the cards; any necessary free variables; the -•constant values--'

of clubs, diamonds, hearts, spades, ace, 2, 3, 4, 5, 6, 7, 8, 9, 10, jack,
queen, and king; the conjunction operator (A); and the existential quantifier
(3). This rule space includes concepts such as contains at leas three cards of
the same rank:

t- -
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3 C,,C2,C3 RANK(c, x) A RANK(C2 ,X) A RANK(c3 ,X),

and also the desired concept of a flush:

3 C1,CC3,C4,CS SUIT(c ,x) A SUIT(c2,Z) A SU^T(C3,X) A

SUIT(c4, x) A SUIT(cS, z).

Note that this rule space does not contain the concept of a straight.
A learning program for searching these two spaces might operate as

follows. First, the program selects a training instance from the instance
space and asks the teacher whether it is an instance of the desired concept.
This information (the instance and its classification) is converted by the
interpretation procedures into a form that can help guide the search of the
rule space. When some plausible :andidate concepts are round in the rule
space, experiment-planning routines decide which training instances should
be examined next. If the learning program works properly, it will eventually
choose, as its best candidate concept, the flush concept shown above.

Learning systems that employ the two-space approach are making use
of the closed-world assumption, that is, the assumption that the rule space
contains the desired concept. The closed-world assumption allows programs /
to locate the desired concept by progressively excluding candidate concepts
that are known to be incorrect.

This two-space view of learning from examples helps to elucidate many of
the design issues for learning systems. In this article, we follow this two-space
model full circle. We examine, in turn, the issues concerning the instance
space, the interpretation process, the rule space, and the experiment-planning
process.

Instance Space

The first issue involving the instance space is the quality of the train-
ing instances. Hligh-quality training instances are unambiguous and thus
provide reliable guidance to the search of the rule space. Low-quality train-
ing instances invite multiple, conflicting interpretations and, consequently,
provide only tentative guidance to the rule-space search.

Consider again the problem of teaching a program the concept of a flush.
There are several sources of ambiguity that could make it difficult for the
program to discover the concept from training instances.

First, the instances may contain errors. If the descriptions of the in-
stances are inicorrect, for example, if a 2 of clubs is incorrectly observed to be
a 2 of spades, the error is a measurement error. If, on the other hand, the
classification of the hand (as being a flush or not being a flush) is incorrect,
the error is a classification error. Two kinds of classification errors can occur.
The program can be told that a sample hand is a flush when in fact it is

S. . . _ -... .. . . . • * --- .,- "A
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not--a fale positive instance-or that it is not a flush when in fact it is-a
false negative instance.

A second source or ambiguity arises if the program must learn from
unclassified training instances. In these so-called unsupervised learning situa-
tions, the program is given heuristic information that. it must use to classify
the training instances itself. If this heuristic knowledge is weak and imper-
feet, the ru!e-space search must treat the resulting classifications as being
potentially incorrect.

A third factor relating to the quality of the training instances is the
order in which they are presented. A good training sequence systematically
varies the relevant features to determine which features are important. When A.

a prcgram is selecting training instances, it attempts to construct a good
training sequence for itself. The task of learning is made much easier if there
is a teacher who car. be counted on to perform tlh;s function. In such cases,
a program can reason about a puzzling instance by trying to infer "'what the
teacher was getting at" in presenting the example.

The main point, then, is that high-quality training instances are unam-
biguous. Under such favorable conditions, the program can be designed to
embody a whole set of constraining assumptions about the examples that
permit it to locate rapidly the appropriatc high-level rule- in the rule space.
Low-quality instances, again, are ambiguous, because the program must con-
sider a much larger space of hypotheses. Thus, if it is possible that the training
instances contain errors, the program must consider the hypothesis that any
given instance is incorrect due to either measurement error or classification
error. In general, the more constraints a program can assume about the data,
the more easily it can learn from them.

The second design issue concerning the instance space is the question of
how it should be searched. This issue has not received much attention in Al
research, since most work has assumed either that the instances are presented
all at once or else that the program has no control over their selection. (See,
however, Rissland and Soloway, 1980, for recent work on instance select*on.)
Programs that can update their hypotheses as additional training instances
are selected (or are made available by the environment) are baid to perform
incremental learning. Programs that explicitly search the instance space are
said to perform active instance selection-

Most methods of searching the instance space make use of a set, II, of
hypotheses in the rule space that are currently believed by the program to be -r

most plausible. One approach is to try to discriminate as much as possible
among tihe alternatives within H. A training instance can be chosen that
"splits II in hair," so that hair of the hypotheses can be ruled out when
the new instance is obtained. Anothcr approach is to choose the most likely
hypothesis in H and try to confirm it by checking additional training instances
(particularly instances with extreme characteristics). Using a confirmatory
strategy, the learning system can determine the limits of applicability of the

. /
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hypothesis under consideration. A thircd approach, called ezpectation-based
filtering, selects training instances that contradict the hypotheses in H (see
Lenat, llayes-Rith, and Klahr, 1979). The hypotheses in H are used to
filter out those instances that are expected to be true (i.e., those that are
consistent with H), so that the learning program can focus its attention
on those instances in which its current hypotheses break down. Finally, an
important consideration may be the size of II, or other computational costs
associated with the learning process. In such cases, new instances may be
selected to minimize these computational costs. For example, the program
might try to rule out only one factor at a time in order to reduce the cost of
comparing a drastically different training instance with each hypothesis in If.

Interpretation Processes

Once the training instances have been selected, they may need to be
transformed before they can be used to guide the search of the rule space. This
transformation process can be quite dilficult, especially in perceptual learning
tasks. Suppose, for example, that we wish to train a computer to recog "ze
the concept of an arch constructed from toy blocks. The program will be
presented with a line drawing of a scene involving a structure of blocks and
told whether or not the scene contains an arch. Winston's (1970) program that
solves this learning task (see Article XIV.D3a) makes extensive use of "blocks-
world knowledge" to interpret the line drawing and extract a relational graph
structure that indicates which blocks are resting on top of which other blocks,
which blocks are touching, and so forth. These are the relations needed to
express the concept of an arch.

Another learning program that performs extensive interpretation of the
training instances is Soloway's (1978) BASEBALL system. The raw training
instances are roughly 2,000 noise-free "snapshots" of a baseball game. The
snapshots give the locations of the nine players on the two teams (e.g., (AT P1
FIRST-BASE)), the location of the ball, and the state of the scoreboard. The
program is composed of a sequence of nine steps that employ various kinds of
knowledge to interpret and generalize the training instances. The first three
steps apply general knowledge about games to filter out periods of inactivity --

and focus on cycles of high activity. The next three steps apply knowledge
about physics and about competition and cooperation to interpret these cycles
of activity as competitive or cooperative episodes. To identify these episodes,
the program must assign goals to the different players (e.g., (WANT-TO-EXECUTE
(AT P1 FIRST-BASE))). It also guesses that the overall goal of an episode is
that of the last action taken by a playter. The linal three steps search the
rule space to discover generali-wed episodes And episode goals such as hit and
out. These concepts are far removed from the original training instances,
but because the previous steps have properly interpreted the data in terms of
goals and actions, this rule-space search is easily accomplished.

- _ _ . ~ * /./
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The basic purpose of interpreting the 'training instances is to extract
information that is useful for guiding the search of the rule space. This Usually
involves converting the raw training instances into a representational form
that allows syntactic generalization to be easily accomplished (see below).

Rule Space

Two main issues are related to the rule space of high-level knowledge:
What is the space, and how can it be searched? The rule space is usually
defined by specifying the kinds of operators and terms that can be used to
represent a rule. The designer of a learning system seeks to cho(*e a rule
space that is easy to search and that contains the desired rule or rules. In the
sections that follow, we first discuss two factors that influence the .hoice of a
representation language for the rule space: the kinds of inference supported
by the representation and the si ngle- representation trick. Then we ,survey
thc four methods for searching the rule space. We conclude the discussion of
rule-space issues by examining problems that arise when the representation is
found to be inadequate for expressing the desired rule or rules.

Syntactic rules of inference. Both the expressiveness of a repre-
sentation aind the ease of searching the rule space depend on the kind and
complexity of the inferences supported by the representation. The most com-
mon inference process needed for learning from examples is generalization.
We say that one description, A, is mote general than another description, B,
if A applies in all of the situations in which B applies and then some more.
Thus, the set Of situations in which A is relevant is a superset of the set of
situations in which B is relevant. For example, the rule that All ravens ate
black is more general than the rule that All one-eyed ravens ate black, since
the set of all ravens strictly includes the set of one-eyed ravens. Often, a
description A is more general than a description B because A places fewer
constraints on any relevant situat~ons. The all ravens rule omits the one-eyed
constraint and, hence, is more general.

It is important to choose a representation for the rule space in which gen-
eralization can be accomplished by inexpensive syntactic operations. Predicate
calculus, for example, is quite amenable to certain kinds of syntactic gen-
eralization. Below are some examples of syntactic rules of inference that
accomplish generalization in predicate calculus. Some recent work in learning
(Larson, 1977; Larson and Michalski, 1977; Michalski, 1980) has sought to
ide1.. ify rules of inference that are particularly useful in learning systems. It
is important to note that these rules of inference do not preserve truth--the
rules are indu- ive.

1. Turning constants to variables. Suppose we want a program to
discover the concept of a flush in poker. We might give some training
instances of the form:
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Instance 1. SUIT(ci, clubs) A SUIT t c2 , clubs) A
SUIT(c3, clubs) A SUIT(c 4 , clubs) A
SUIT(cG, dubs) " FLUSIl(c1, C,C3,c 4,C,).

Instance 2. SUIT(ct, spades) A SIUIT(C2, spades) A
SUIT(c3, spades) A JUIT(C,, spade,) A
SUIT(cs,spades) =* FLUSH(ct,cs,CeC 4 ,es).

From these, the program could hypothesise the rule

Rule 1. SUIT(c,, z) A SUIT(C2, x) A SUIT(cs, z) A SUIT(C4, x) A
SUIT(cs, z) = FLUSH(c,c2,c 3 , c4 ,C6).

by replacing the atomic constants of clubs and spades by the variable z
(where z stands for any suit).

2. Dropping conditions. Suppose again that we are teaching a program
the concept of a Bush, but now we present instances of the form:

Instance I. SUIT(et, clubs) A RANK(ct, 3) A
SUIT(c2 , clubs) A RANK(c2, 5) A
SUIT(c 3, clubs) A RANK(c3,7) A
SUIT(C4 , clubs) A RANK(C4 , 10) A
SUIT(cs, clubs) A RANK(c6, king)

F ta.US(e, ,c2 ca,C3,,c 6 )."

In order to discover rule 1, the program must not only turn constants
into variables, but it must also "forget" all of the RANK predicates, since
rank is irrelevant. This can be accomplished by dropping conditions. Any
conjunction can be generalized by dropping one or its conditions. We can
view a conjunctive condition as a constraint on the set or possible instances
that could satisfy the description. By dropping a condition, we are removing
a constraint and generalizing the rule.

3. Adding options. A further way to generalize a rule is to add another
option to the rule so that more instances may conceivably satisfy it. Suppose
we are trying to teach a program the concept of a face card (i.e., jack, queen,
or king). We might give examples of the form:

Instance 1. RANK(c,,jack) = FAClE(c,).
Instance 2. RANK(el, lueen) = FACr(ct).
Instance 3. RANK(ki,king) : FACE(c).

The program can discover the rule by forming the disjunction of the pos-
sibilities:

Rule 2. RANK(cl,jaik) V RANK(ci, queen) V RANK(c,, king)
= FACr(et..

Notice that this decision o add options is a less drastic generalization than
that or turning the jack, ueen, and king constants- into a single variable to
get

Rule 3 (wrong). RAN (c,,y) • FACE(c,).
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An altenative to ordinary disjunction is what Michalski (19080) ternis ap
internal di~ijunction. If w~e allow sets and set membership in our repre-
sentation, we can express our instances as

Instance Z'. R-ANI((ct) E~ {jack} FACEI(ci).
Instance 2'. R.ANK(ci) E {queen) FACE(ci).
Instance 3'. RANK(ct) E {king) F lACE4ci).

The generalization can then be cxpressed as

Rule 2'. RANK(ci) E (jack, queen, king) --* FACIE(ci).

This latter representation is more compact.

Similar rules of generalization can be defincd for numerical representa-
tion.3 that use a linear combination of features, as follown:

4. Curve fitting. Suppoge a program is attempting to discover how the
output, z, or a system is related to two inputs, x and V. The program is
provided with training instances in the form of (x,y', z) triples that show
the output or the system for particular valtics of the inputs:

Instance 1. (0,2,7).
Instance 2. (6, - 1, 10).
Instance 3. (-1, -5, -16).

By a curve-fitting techniquem, such as least-squiares regression, the program
fits the line

Rule 1. = 2x +3u + 1,

or, alterimately, the ordered triple (z, y, 2x + 3y + 1) , to these data. This
generalizes the relationship, so that it holds for many more (r, Y, -1) triple-.
than just the three training instances. The program can now predict the z
output for any values of the x and yv inputs. This process is analegous to
the turn ing- constants- in to- variah lcs generalization rule.

5. Zeroing a copfficient. The program can fuirther generalize this relation-
ship by zeroing the y coeflicicnt and dtting a plane to the three trairing
instances. In this case, it obtains

Rule 2. z = 2.59x -3.9

Alternately, the ordered triple is (x, y, 2.59x - 3.90). (The y coordinate can
be~ anything.) Bly giving y the coefficient of zero, the program has dropped it
as a condition and reduced the dimoensionality of tne function zF(z, y) to
make it z = G(x). The program has decided that y is irrelevant to the value
of z. The relationship now holds for an even larger set of' (r, y, z) triples.
Thlis rule is analogous to the dropping-condition rule of generalization.

Notice that these rules of inference correspond to particular features of
the representation language. For exampsle, the method of turning constants
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into variables makes ustý of free variablces the method of adding options uses
the disjunction operator, and the coefficient- zeroing technique makes use of
the multiplication operator. To the extent that the representation language
has fewer of these features, fewer inference rules will be applicable and,
consequently, the search of the rule space will be easier to accomplish. But
since each of these language features contributes to tlhe expressiveness of the
representation, the designer of a learning systerr faces a trade-off between the
iecreased expressiveness of the representation and the increased difficulty of
searching the rule space.

The single-representation trick. Another factor relating to the dif-
ficulty of searching the rule space (and the instance space) is the difference
between the representation used for rules and the representation used for
the training instances. If the representations for the rule space and the
instance space are far removed from each other, then the searches of the
two spaces must be coordinated by complex interpretation and experiment-
planning procedures. One trick commonly used to avoid this problem is to
choose the same representation for both spaces. Training instances are viewed
literally as highly specific pieces of acquired knowledge. Suppose, for example,
that we are trying to teach a program the concept of a pair in poker. We
want the program to learn the rule

Rule 4. 3 card,,card. : RANK(eard,,z) A RANK(Card2 , z) =* PAIR.

(This is only an approximate definition of PAIR. An exact definition would
require a more complex representation involving equality.)

As was shown above, specific hands could be represented "naturally" as
sets of five ordered pairs-the rank and suit of each of the cards. With such
a representation for the hand made up of the 2 of clubs, 3 of diamonds, 2 of
hearts, 6 of spades, and king of hearts, we would obtain

instance 1. {(2, clubs), (3, diamonds), (2, hearts)), (6, spades), (king,, hearts)'}
I PAIR.

But this representation makes it difficult to discover the concept of a pair in
poker with the syntactic rutles of inference described above. A less natural, but
more useful, representation would describe the hand in predicate calculus--
the same representation that we will eventually need for the acquired concept
(rule 4). Thus, we would say of our hand

Instance 1'. 3 c ,c2.,c 3 ,c 4 , c : RANK(cl,2) A SUIT(cl,clubs) A

R.ANK(c'4 , 3) A SUIT(c2, diamonds) A

RANK((C,2) A SUIT(c3, hearts) A
ItANK(c 4,6) A SUl'r(c,h.pades) A
RANK(cr, K) A SUIT(cs, hearts) : PAIR.

Now the process of generalization merely involves dropping the SUIT condi-
tions and replacing the constant 2 by a variable z. Of course, there are many
other possible generalizations of instance I', and the search of the rule space

/
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would still be nontrivial. The advantage of using the single-representation
trick is that we have chosen a representation that allows this search to be
accomplished by simple syntactic processes.

The problems of interpretation and experiment planning are eased when
the single-representation trick is used. Many learning programs sidestep these
problems completely by assuming that the training instances are proided by
the environment in the same representation as used for the rule space. In
more practical situations, the interpretation and experiment-plarning routines
serve to translate between the raw instances (as they are received from the
environment) and the derived instances (after they have been irterpreted as
specifit poinw in the rule space).

Methods of searching the rule space. Now that we have discussed
the issue of how to represent the rule space, we can turn our attention to the
four main methods that have been used to starch the rule space. All of these
methods maintain a set, H1, of the currently most plausible rules. They dilfer ' /
primarily in how they refine the set H so that it eventually includes the desired
points in the rule space. A useful classification of search methods distinguishes
methods in which the presentation of the training instances drives the search
(so-called data-driven methods) from those methods in which an a priori model
guides the search (so-called model-driven methods).

The first data-driven method is the version-space method (and several
related techniques). This approach uses the single-representation trick to
represent training instances as very specific points in the rule space. The
set H is initialized to contain all hypotheses consistent with the first positive
training instance. New training instances are examined one at a time and
pattern-matched against H to determine whether the hypotheses in H should
be generalized or specialized.

The second method, also a data-driven method, does not use the single-
representation trick. Instead, special procedures (or production rules) examine
the set of training instances -nd decide how to refine the current set, H,
of hypotheses. The program can be viewed as having a set of hypothesis-
refinement operators. In each cycle, it uses the data to choose one of these
operators and then applies it. Lenat's (1976) AM system is an example of this
approach.

The third approach is model-driven generate and test. This method
repeatedly generates and tests hypotheses from the rule space against the
training instances. Model-based knowledge is used to constrain the hypothesis
generator to generate only plausible hypotheses. The Meta-DENDRAL pro-
grain is the best example of this approach (see Buchanan and Mitchell, 1978).

Finally, Lhe fourth approach is model-driven schema instantiation. It uses
a set of rule schemas to provide general constraints on the formn of plausible
rules. The method attempts to instantiate these schemas from the current
set of training instances. The instantiated schema that best fits the training
instances is considered the most plausible rule. Dietterich's SPARC program

/
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(Dietterich, 1979; Dietterich and Michalski, in press), which discovers secret
rules in the card game Eleusis, applies the schema-instantiation method.

Data-driven techniques generally have the advantage of supporting incre-
mental learning. A feature of the versian space method, in particular, is
that the It set can easily be modified to account for new training instances
without any backtracking by the learning program. In contrast, model-drivenr
methods, which test and reject hypotheses based on an examination of the
whole body of data, are difficult to use in incremental learning situations.
When new training instances become available, model-driven methods must
either backtrack or search the rule space again, because the criteria by which
hypotheses were originally tested (or schemas instantiated) have changed.

A strength of model-driven methods, on the other hand, is that they
tend to have good noise immunrity. When a set of hypotheses, 1[, is tested
against noisy training instances, the model-driven methods need not reject a
hypothesis on the ba.sis of one or two counterexamples. Since the whole set of
training instances is available, the program car. use statistical measures of how
well a proposed hypothesis accounts for the data. In data-driven methods, If is
revised each time on the basis of the current training instance. Consequently,
a single erroneous instance can cause a large perturbation in II (from which
it may never recover). One approach that allows data-driven methods to
handle noise is to make very slight, conservative changes in II in response to
each training instance. This minimizes the effect of any erroneous training
instances, buit it causes the learning system to learn much more slowly.

The problem or new terms. lu some learning problems, the program
can assume that the desired rule or rules exist somewhere in the rule space.
Consequently, lte search has a well-delined goal. In many situations, however,
there is no such guarantee, and the learning program must confront the
possibility that its representation of the rule space is inadequate ind should
be expanded. This is called the problem of new terms.

One approach to expanding the rule space is to add new terms to the
representation. Consider again the problem ol teaching a program the concept
of a pair in poker. In the section above, the program was able to represent the
pnir concept by using a predicate-calcults representation with the suit and
rank terms. Such a representation would not permit the program to discover
the concept of a straight, however. One way to represent the straight concept
would be to create a new term called SUCC(X, y), which is true if and only it
z y + I. Now the straight concept can be represented as:

RANK(el,ri) A RANK(c., r-) A RtANK(,,, r3) A RANK(c.i,r.i) A RANK(cs, r5) A

SUCC(ri, r2) A SUCC(r.., r3) A SUCC(r 3 , ri) i\ SUCC(ri, "s)-

The problem of defining new terms is quite difficult to solve. An advantage
of the hypothesis-refinement operator approach to searching the rule space is
that it is fairly easy to incorporate operators that create new terms. The
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BACON (Langley, '198f) and AM progra.ms both have operators that create
"new terms by combining and refining existing terms.

Ezperiment Planning

Once the learning element has searched the rule space and developed
a set, H, of plausible hypotheses, the program may need to gather more
training instances to test and refine them. WlMen the instance space and the
rule space are reprcsented in very different ways, the process of determining
which training instances are needed and how they can be obtained can be
quite invo!ved. Suppose, for example, that a genetics learning program is
attempting to discover whicýi portions of DNA are important. To test a high-
level hypothesis (or seicral hypotheses), it may be necessary to plan a very
involved experiment to synthesize a particular strand of DNA and insert it
into the appropriate bacterial cells to observe the resulting behavior of the
cells.

The AM program is an example or an Al learning program that performs
some experiment planning. After one of AM's refinement operatc-s creates
a new concept, AM must gather examples of Lhat concept to evaluate and
refine it. Several techniques are used to generate good training instances,
for example, by symbolically instantiating the con-:opt definition or by inher-
iting examples from more general or more spccific concepts. AM has a spe-
cial body of heuristics for locating positive and negative boundary examples
(i.e., examples that barely succeed, or barely fail, to be instances of the con-
cept).

Taxonomy of Work in Learning from Examples

Now that we have described the two-space model, we present a rough
taxonomy of work in the area of learning from examples. Several subareas
of research have developed within this area, ranging from philosophically
oriented inductive iearning to highly engineering-orientck' pattern-classification
work. These different areas can be characterised by two components of the
simple learning model presented in Article XIV.A: the represent'-tion used in
the knowledge base and the task that the ierformance element carries out.
In the remainder of this chapter, a separate article is devoted to each of these
subareas.

Systems that use numerical representations. Researchers in electri-
cal engineering and systems theory have developed learning methods that
represent acquired knowledge ia the form of polynomials and matrices. The
performance element- of these learning systems, which are usually called adap-
tive systemn, typically perform tasks such -w pattern classification, adaptive
control, and adaptive filtering. The strengths of these adaptive methods are
that they can be used in noisy environments, in environments whose properties
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-ire changing7 rapidly, and in situations where analytic ,;olujtions based on clas-
sical systoitis theory A~re u iiav.ýilahble. WVe iichide ant article on this subject
because of its hiistorical rvlationship to Al and becaiuse ot the possi!bility that
uszefol hb ri~i systemis may he constructed in the futiure.

Syiitcmu that. use symbolic repreunteotations. Mlost Al work on learn-
ing h.ia usevd symbo hlic repre~senitations suich -Ls feature vectors, first-order predi-
c.,te calculus, and prodiliction rules to represent lie knowledge acquirud by 'he
learning element. It is u1se-ful to cl -sf tiwok according to the complexity
of the taLsk being, performed by the learning system:

1. Learninuq single concepti. The sirnpl,-t performance task is to classify new
unstanici' 3arloring to whether they are instances of 3 single concept.

1 ho priohlorm of learninr sjingle conce~pts has-- received a lot of attention
and is probably the best understood learnirit task in Al.

2. Learning "iultivl- :onicepts. Many performance tasLks involve~ the use of
a jet of coincepts, that operate independently. D~isease diagnosis, for
exninplo% is a task in which the pirogramn see-ks to issiign one or mnore7
diseas-e classes to a patient. The prohle of learning a set of concepts
has receive-d somie attento~n in Al. The Nfeta- DINDtAL. and AM systems,
for viaiple, discover many concepts in order to describe their training
inst~ances and ,ui'tc the perforinance element.

3. Learning to perform rrnuliple-sitep tnsks. The most complex performance
tasksi for which learning techniiiqiis have been .Ievvloped ,re reltivl

sinPipl planning, taLsks that reqviirr the performanic e lemnent to apply
a sequence of operators to perform the task. Unlike the multiple, but
independent, concepts used in Meta-DEND)f..L, and AMt, the rifles i.1
the-se systemis rntist be chained tog-tIher into a 4equence. Consequently,
many dillictilt problems of integra! ion -id credit-assignmnent arise.

Rele re nces

Simon and Lea (1971I) describe the two-space model of rule induction.
Dietterich and %lichalsk, (1981) provide somne perspectives3 on systems that

learn from examples. See also Buchanan, Mitchell, Smith, ai~d Johnson (1977).



D2. Learning in Control and Pattern Recognition Systems

THERE ARE many applications in engineering and science for which learning
systems have been developed. These systems, usually called adaptive syatemn,
are useful when classical systems techniques cannot be applied because of
insufficient knowledge about the und..rlying system. Such situptions often
arise in extremely noisy and rapidly changing environments.

Classical systems theory addresses itself to problems in the design and
analysis of systemn, where a system is viewed abstractly as an operator that
maps a vector of inputs, x, to a vector of outputs, y. Two important engineer-
ing problems for which learning systems have been developed are control and
pattern recognition.

Consider the control problem shown in Figure D2-1. The system is an
automobile engine. The inputs-in this case, control inputs-are the amount
of gasoline and the setting of the spark-plug advance. The single output is
the speed of the engine. The control problem is to determine the settings
of the inputs over time, so that the output follows a particular curve. We
want the speed of the engine to track the desired speed as commanded by the
driver of the automobile. If we have a mathematical model of the engine-say,
as a set of differential equations relating z, and z2 to y-we can often solve
this control problem. To obtain the model, we can usually inspect the system
directly and apply the laws of physics. But in complex, time-varying systems, -'

such an approach may be impossible. Instead, it may be necessary to identity
the system-that is, construct a model by observing the system in operation
and finding an empirical relationship between the inputs and the outputs.

Pattern recognition-the other task for which adaptive learning is useful-
also can be viewed as a system-identification problem. The pattern-classifi-
cation system shown in Figure D2-2 takes an input object--represented as
a vector, x, of features-and maps it into one of m pattern classes. The

Controller Automobile Y Actual
Se Snrle Engine / Speed of

r2Spark 
Advance 

Engi ne

Engine A-T 1.X2 )

Figure D2-1. A simple control problem.
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Input Character Recognizer Y Character Class
Image (person) •A.B. Z.1.2,. . ..

"Figure D2-2. A simple pattern-classification problem.

archetypal pattern-classification problem is optical character recognition, in
which the inputs are images of handwritten or printed characters and the
output is a classification of each image as one of the letters, numerals, or
punctuation symbols. Suppose we want to build a computer system that can
recognise characters. We have available an unknown system-in this case, a
person-that An perform the task reliably. If we can identify the system, we
will then have a computer model that can recognize handwritten characters.

Figure D2-3 illustrates the general setup for adaptive system identifica-
lion. The unknown system and the model are configured in parallel. Their
outputs-the true output, y, and the estimated output, .- arc compared,
and the error, e, is fed back to the learning element, which then modifies the
model appropriately. In the terminology of our simple learning-system model,
the unknown system is the environment. It provides training instances, in the
form of (x,y) pairs, to the learning element. The, learning element modifies
certain parts of the model (i.e., the knowledge base), so that the model system
(i.e., the performance element) more accurately models the unknown system.

Conceptually, therefore, adaptive system identification, adaptive control,
and pattern recognition are all problems of learning from examples. The

"-- System.+

Ie

Element •-

Figure D2-3. Adaptive system ihcntification.
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unknown system provides the training instances and the performance stan-
dard (i.e., the true y'values).

In this article, we discuss the methods that have been used to accomplish
this learning. We have divided the methods into four groups according to the
representations that are used to model the unknown system:

1. Stadtiael aigonthms, which employ probability density functions to create
a Bayesian decision procedure;

2. Parameter karning, which uses a vector of parameters and a linear model;

3. Automata learning, which uses stochastic and fussy automata (discussed
below) to model the unknown system; and

4. Struchwal earning, which uses pattern grammars and graphs to represent
classes of objects for pattern classification.

Statistical Learning Algorithms

In pattern recognition (and sometimes in control), it is possible to view
the unknown system as making a dccision to assign the input, x, to one
class, i, out of m classes. By defining a loss function that penalizes incorrect
decisions (i.e., decisions in which i differs from y), a minimum-average-loss
Bayes classifier can be used to model the unknown system. The problem of
identifying the unknown system then reduces to the problem of estimating a
set of parameters for certain probability density functions. These parameters,
such as the mean vector and the variance-covariance matrix, can be estimated
from the training instances in a fairly straightforward fashion (see Duda and
Hart, 1973).

In the terminology of Simon and Lea (1974), the set of all possible x vec-
tors forms the instance space, and the set of possible values for the parameters
of the probability distributions forms the rule space. The rule space is searched
by direct calculation from the training instances. The instance space is not
actively searched.

Unfortunately, these methods rely on assuming a particular form (e.g.,
multivariate normal) for the probability distributions in the model. These
assumptions frequently do not hold in real-world problems. Furthermore, the
computational costs of the estimation may be very high when there are many
features. -

Parameter Learning

In parameter learning, a fixed functional form is assumed for the unknown
system. This functional form has a vector of parameters, w, that must be
determined from the training instances. Unlike the statistical methods, there
is little or no probabilistic interpretation for the unknown parameters and,

" " ' / -' ".. _ • .--/" .' ' . .
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consequently, probability theory provides no guidance for estimating them
from. the data. Instead, some sort of criterion, usually the squared error
(y - W averaged over all training instances, is minimized. The rule space
is thus a space of possible parameter vectors, and it is searched by hill-
climbing (also called gradient descent) to find the point that minimizes the
error between the model and the unknown system.

The most popular form assumed for the unknown system is a linear
functional:

y WX 1wixi.

i

The output is assumed to be a linear combination of the input feature vector,
x, with a weight vector, w. The elements of the weight vector are the unknown
parameters. The rule space is thus the space of all possible weight vectors,

* known -3 the weight space.
An important special case arises when the unknown system is a binary

pattern classification system similar to the system shown earlier in Figure
D2-2. In binary pattern classification, the classifier must indicate in which
of the two pattern classes the input pattern, x, belongs. This is typically
accomplished by taking the output, y, of a linear functional and comparing
"it to a threshold, b:

If V > b, then x is in class 1.
If y < b, then x is in class 2.

Usually, the instance 3pace is normalized, so that the threshold b is zero. This
linear-discriminant function can be thought of as a hyperplane that splits the
instance space into two regions (class I and class 2). For example, if x!--"
(X1 3,X 2) is a two-dimensional feature vector and w = (-1,2), the instance
space is split as shown in Figure D2-4.The learning problem of finding w can thus be viewed as the problem
of finding a hyperplane that separates training instances of class I from
training instances in class 2. When it is possible to find such a hyperplane,
the training instances are said to be linearly separable. Often, however, the
training instances are not linearly separable. In such cases, we must either use
a more complex functional form, such ,s a quadratic function, or else settle
for the hyperplar.e that makes the fewest errors on the average.

How can the desired hyperplane, or, equivalently, the desired weight
vector, be found? WVe describe three b.asic algorithms ror computing the weight
vector. The first two algorithms are hill-climbing methods that process the
training instances one at a time. After each training instance, xk, the weight
vector, wk, is updated to give w,+t..

The first algorithm, called the fixed-increment perceptron algorithm, seeks
to minimize the classification errors made by the model. If xk is an instance
of class 1 and - wx, is less than 0, instead of greater than 0, an error

X "-
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12

+ + + + -.

+ + +

+: Instance of class I
-: Instance of close 2

Figure D2-4. An example .of a linear-discriminant function. \

has been made. The magnitude of this error is e = 0 - wkxA,, that L, the
difference between the desired value for the output of the system (y = 0) and
the value computed by the model (• - wAxh). This i usually written as the
perceptron criterion,

JP = -Wkxk,

and the goal of learning is to minimize Jp. The fixed-increment algorithm
updates wk whenever Jp > 0 according to

w+L= w2 +xh . (1) -

We can think of J. as a surface over the weight space, the space of possible
values for the weight vector w (see Fig. 6)2-5). Mathematical analysis shows
that x can be viewed as a vector in this weight space (as well as in i4stance
space) pointing in the direction of steepest descent for J.. Thus, this algorithm
takes a fixed-size step in the direction of steepest descent.

Similarly, if xk is in class 2 and wkxk > 0, an error has been made. The
solution is to adjust w as

Wk+1 -= Wh -Xk. -

Equivalently, all training instances in class 2 can be replaced by their nega-
tives, and all instances can be processed an though they were in class 1.
Equation (1) can then be used to perform the entire learning process.

The fixed-increment algorithm converges in a finite number of steps if the
training instances are linearly separable. It has been shown for the two-class
case that the number of training instances should be at least twice the number

.of features in the instance space (see Nilsson, 1965).

//
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weight space
x

Figure D2-5. A schematic diagram of the perceptron algorithm.

Historically, the fixed-increment algorithm is associated with Rosenblatt's
(1957, 1962) perccptron, which was developed within the study of bionics and
neural mechanisms. The simplest perceptron, shown in Figure D2-6, is a
device that assigns patterns to one of two classes. It consists of an array
of sensory units connected in a random way to an array of unmodirtable
threshold units, each of which computes some desired feature of the sensory
array and produces a +1 or -1 output, depending on whether the feature

is present or absent. The outputs of these feature-extraction units are then
connected to a modifiable unit that weights each input and sums the result
(i.e., computes wx). The resulting value is comparcd with a threshold, and the
perceptron produces an output of +1 if wx is greater than the threshold and
-1 otherwise. Thus, the simplest perceptron implements a linear-discriminant
function. The original publication of the perceptron model sparked a large

or

Sen.ory Fixed Adjustable
Input FFeature Linear Threshold

Extractors Device

Figure D2-6. The simplest form of perceptron.



D2 Learning in Control and Pattern Recognition Systems 379

amount of research, and a fair amount of speculation, concerning the potential
for building intelligent machines from perccptrons. Minsky and Papert (1969)
attempted to quiet this speculation by proving several theorems about the
limits of perccptron-based learning. The introduction to their book provides
several criticisms of Al learning research that remain valid today.

The fixed-increment perceptron algorithm can be improved in several ways
by choosing how far in the direction of the gradient to go at each step. The
LMS (least-mean-square) algorithm (Widrow and HofT, 1960), for example,
updates w according to

.Wk+l 2 Wk + pekXk p

where p is a positive value and ek is the magnitude of the error, that is,
-wkxk. This algorithm tends to minimize the mean-squared error

j. = E (WAX9)2

even when the classes are not linearly separable. The algorithm is also very
easy to implement.

More robust, but harder to compute, algorithms are based on tradi-
tional linear-regression and linear-programming techniques (see Duda and
Hart, 1973). Given a set of training instances, linear regression can be used
to minimize J,. The weight vector is computed from the data as

w = (XrX)-IXTy,

where y is the true output of the unknown system and X is a matrix of train-
ing instances, one instance in each row. Unfortunately, this method requires
computing the pseudo-inverse (XTX)-IXr of X, which is an expensive step.
Less costly recursive algorithms have been developed that can compute w
incrementally as the training instances become available, rather than collect-
ing all of the instances and ccmputing w once and for all (Goodwin and Payne,
1977).

Linear-programming techniques can be used to minimize the perceptron
criterion, J,. These methods also conduct a hill-climbing search of the weight
spai.e. Further details are available in Duda and Hart (1973).

Some of these linear-discriminant algorithms can be modified slightly to
put them on sound statistical foundations. The regression techniques, for
example, can be adjusted to converge in the. limit to an optimum Bayes clas-
silicr. Their rate of convergence is slower than the unmodified ,algorithms.
Consequently, the simpler, faster algorithms shown above arc often chosen in
favor of the statistically more rigorous methods.

AU of these methods for Findiag discrimninant functions can be general-
ized to handle classification problems for more than two classes. Typically,

/
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a separate discriminati6n function is learned for each of m classes, and X is
classified to that class i for which the value of the discriminant function f,(x)
is largeit. Another approach to multiple-class problems is to perform a multi-
stage classification in which x is first classified into one of a few classes and
then each of these is in turn split into subclasses until x is properly classified.
By decomposing the classification problem into subproblems, other a priori
knowledge about different classes-and the features relevant to those classes-
can be incorporated into the system. Most large, multicategory problems do
not lend themselves to straightforward general solutions. Instead, the struc-
ture and organization of the clamsification strategy are usually highly depen-
dent on the particular problem and domain-specific knowledge. Consequently,
many of these classification problems overlap problems in Al.

Learning Automata

An alternate representation for' an unknown system is as a finite-state
automaton (Fu, 1970b). The. goal is to find a finite-state automaton whose
behavior imitates that of the unknown system. Two quite similar approaches
have been pursued. One models the unknown system as a deterministic finite-
state machine with randomly perturbed inputs. The learning program is
given an initial state transition probability matrix, M, which tells overall for
each state, qi, what the probability is that the next state will be q,. From
M, an equivalent deterministic machine can be derived, and the probability
distribution of the input symbols can be determined. This approach requires
that the internal states of the unknown system can be precisely observed and
measured.

A second approach models the unknown system as a stochastic machine
with a random transition matrix for each possible input symbol. Reinforce-
ment techniques are applied to adjust t!' Lransition probabilities. Unfortu-
nately, this requires a large amount of training information in order to exercise
all possible transitions. Aa with the first approach, assumptions about the
observabi!ity of all internal states must be made.

Fuzzy automata based on Zadeh's /uzzi set concept provide an alternate,
but similar, approach to that used with stochastic automata (Wee and Fu,
1969). Set-membership criteria are applied, rather than probabilistic con-
straints, in the selection of transitions and outputs. Fuzzy automata are also
able to make higher order transitions than stochastic automata and, conse-
quently, they can usually learn faster.

The basic ideas of automata learning have been extended to take into
account the interactions of a number of automata operating in the same envi-
ronment. Such automata may interact in either cooperative or competitive
modes. This has led to the formulation and study of automata games (Fu,
1970b).
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Automata methods have the advantage over parameter-learning methods
in that they o a not require that there be a performance criterion with a unique
minimum point. Furthermore, automata provide a more expressive repre-
sentation for describing the unknown system. The principal disadvantage
of automata learning methods is that they are relatively slow compared to
parameter learning techniques. In addition, they are usually suitable only FcT
application in stationary (i.e., non-time-varying) environments. Consequently,
automata methods have not yet seen much practical application.

Structural Learning

Structural learning techniques have been used primarily in situations in

which the objects to be classified have impt taut substructure (Fu, 1974). The
parametric linear-discriminant approaches described abeoe can represent only
the global features of objects. By employing pattern graphp and grammars,
important substructures, such as the pen strokes that make up a character
and the phonemes that make up a spoken word, can be represented along with
their interrelationships. A first step in setting up a structural learning scheme
involves identifying a set of primitive structural elements associated with the
problem. These primitives may be thought of as the alphabet for describing
all possible patterns associated with the application. They need to be higher
level objects than simple scalar measurements (e.g., characters, shapes, and
p,,lnmes instead of height, width, and curvature). Legal and recognizable
pav:,rns are formed from combinations of the primitives according to certain
syntactic rules.

Formal language theory provides a theoretical framework that accom-
modates the structural or descriptive formulation of pattern recognition. Here,
the alphabet corresponds to the set of structural primitives. A number of for-
malisms have been used to express structural descriptions. In linguistic terms,
a pattern may be thought of as a string or-sentence, and a grammar may be
associated with each pattern class. The grammar controls the structure of
the language in such a way that the sentences (patterns) produced belong
exclusively to a particular pattern class; a grammar is therefore needed for
each pattern, class. Parsing techniques can help determine whether a sentence
(pattern) is grammatically correct for a given language. Both deterministic
and stochastic grammars have been employed in pattern classification. (See
Article XIf.E3 for a discussion of grammatical approaches to image under-
standing.)

Stochastic grammars (see Article XIV.DSe) have been used in an attempt
to accommodate the possibilities of umbiguity and error in pattern descrip-
tion. These grammars make it possible for probabilistic assignments to be
made. Before such a grammar can be used for classification, the production
probabilities must be determined, for example, by "learning" them from a set
of training examples.
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There are still several diriculties associated with the structural approach
to pattern classification. In contrast to the statistical and parameter learning
methods, very few practical structural training algorithms have presently been
proposed. The problem of learning a grammar from training instances is
called grammatical inference. Article YIV.DSe describes the current state of
work in that area. In addition to the problem of learning the grammar, the
steps of segmentation into primitives and formation of structural descriptions
are only partly solved.

Relevance for Artificial Intelligence

This survey of learning systems in engineering shows that many of the
problems addressed are analogous to those encountered in the design of Al
learning systems. Engineering systems are Particularly adept at handling
noisy training instances-a problem that few Al systems have addressed. It
has also been possible to develop detailed analyses of these learning algo-
rithms, including convergence proofs and investigations of their statistical
foundations.

The primary drawback of these methods is their reliance on simple feature-

vector representations. Although there are many practical applications for
which these representations suffice, most problems of interest to Al research-

ers require more expressive representations. The more recent attempts to use
automata and pattern-grammar representations are much more relevant to AI
research.

Some aspects of the work in engineering may be important for Al reser.rch- \
ers. In addition to work on the problem of noise, some progress has been
made on solving the problem of choosing a good set of features with which to
perform the learning process. One approach is to estimate the discriminatory

ability of each feat-re given choices of the other features. Dynamic-program-
ming techniques can help determine a good ordering of the features (from
most relevant to least relevant). A second interesting approach-called dimen-
sionality reduction-is to take a large set of features and compute a new,

smaller set by forming linear combinations of the old features. The Karhunen-
Lo&ve expansion can be used to create such derived features (see Fu, 1970a,
and Article xnli.cs).

Reference.

A very rendfable introduction to linear-discriminant, functions can be found
in Nilason (1965). Duda and il;1rt (1973) provide an excellent soirvey of pattern
recognition techniques. Tsypkin (1973) develops a tirmal, unified treatment

of learning methods in engineering.
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D3. Learning Single Concepts

MANY PROGRAMS have been developed that are able to learn a single concept
from training instances. This article describes the single-concept learning
problem and discusses a few, selected learning programs that give a sense of
the techniques that have beeri applied to this problem.

What does it mean to learn a concept front training instances? The term

concept is used quite loosely in the AU literature. In this article, we take
a concept to be a predicate, expressed in some description language, that

is TRUS when applied to a positive instance and FALSE' when applied to a
negative instance of the cuncept. A concept is thus a predicate that partitions

the instance space into positive and negative subsets. For example, the concept
3f straight can he thought of as a predicate that indicates, for any poker hand,
whether or not that hand is a straight.

The single-concept learning problem is the problem of discovering such a
concept predicate from training instances--that is, from a sample of positive
and negative instances in the instance space. The standard solution to this .
problem is to provide the learning program with a space of possible concept /
descriptions that the learning program searches to find the desired concept .
description (see Article XIV.DI).

Formally, the single--oncept learning problem can be stated as follows:

Given: (1) A representation language for concepts. This implicitly
defines the rile space: the space of all concepts repre-
sentable in the language.

(2) A set of positive (and usually negative) training instances.
In most work to date, these training instances are noise free
and classified in advance by the teacher.

Find: The unique concept in the rile space that best covers all or
the positive and none of the negative instances. Most work
to date assumes that if enough instances are presented, ex-
actly one concept exists that is consistent with the training
instances.

To gain insight into the origin of the single-concept learning problem, it
is useful to examine the performance tasks that make use of the concept once
it is learned. The standard performance task is classification; the system is
pre.ent.d with new unknowns and is asked t) classify them as positive or
negative instances or a concept. Another common task is predicticn; it the
training instances are successive elements of a sequence, the system is asked to
predict future elements in the sequence. A third task is data compreuion; the
system is given all possible instances (the full instance space) and is asked to
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find a concept that compactly describes them. The concept-classification and
sequence-prediction tasks both arose as laboratory paradigms within cognitive
psychology (see Hunt, Marin, and Stone, 1966) Sequence extrapolation is also
a paradigm example of induction as discussed by philosophers (Carnap, 1950).
Data compression is of practical value for storage and classification.

The two key assumptions made in all of this work are (a) that the train-
ing instances are all examples (or counterexamnples) of a single concept and
(b) that that concept can be represented by a point in the given rule space.
When the first assumption is violated, it is necessary to lind a set of concepts
that account for the training instances. The systems described in the article
on multiple concepts (Article XIV.D4) address this probkem|. When the second

assumption is violated, it is necessary to alter the rule space so that it does
contain he desired concept. Very little attentioa has been given to this prob-
lem in single-concept learning. The BACON program employs some simple
methods to alter the rule space by adding new terms to the representation
language (see Article XIV.D3b).

Approaches to Solving the Single-concept Learning Problem

In Article XIV.DI, we described four basic techniques-version spaces,
refinement operators, generate and test, and schema instantiation-that are
used to search the rule space. Each of these search methods ha3 been applied
to the single-concept learning problem. The remainder of this article is divided

into four subarticles-one devoted to each method. The first two subarticles

describe data-driven methods. Mitchell's version-space method is discussed
lirst. It provides a useful framework for describing several related systems
developed by [Ilayes-Roth, Vere, and Winston. Then two refinement-operator
systems, BACON and CLS/1D3, are presented. The second pair of subarticles
describes model-driven methods: a generate-and-test method developed by

l)ietterich and Michalski (1981) and a schema-instantiation method, SPARC,
that plays the card game Eleusis.

Reference3 .

See Mitchell (1978, 1979).
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RECENT WORK by Mitcbhii (IM77, 1979) provides a unified framework for
describing systems that use a data-driven, single-representation approach to
concept learning. Mitchell has a.oted that, in all representation languages, the
sentences can be placed'in a partial order according to the generality of each
sentence. Figure D3a-I illustrates this general-to-specific ordering with a few
sentences in predicate calculus containing the predicates RED and BLACK. The
concept 3 c: RED(or), for example, describes the set S of all poker hands
that contain at least one red card. ThA concept is more general than the
concept 3 c1 c2 : RED(ci) A RI'D(c2 ) that describes the set T of all poker hands
containing at least two red cards, since the set S strictly contains the set 7.
The set of cards described by 3 C1 c2 c3 : RED(cj) A RED(c 2 ) A BLACK(c 3 )
is smaller still and, thus, is even more specific than the 3 c1 c2 RED(ci) A
RED(c2) concept.

It should be evident that the syntactic rules of generalization described in
Article X1V.Dt can be used to generate this partial ordering. in this ex:.mple,
the dropping-conditions rule of generalization was applied to the three most
specific concepts to generate the others. In general, 'ny rule space can be
partially ordered according to the general-to-specific ordering.

The most general point in the rule space is usually the null description
(in which all conditions have been dropped), which places no constraints
on the training instances and thus describes anything. The most specific
points in the rule space correspond to the training instances themselves--
represented in the same representation language as that used for tl.e rule space
(see Fig. D3a-2).

3 cic, RED(c,) A RED(c{) 3. c•c2 RED(c,) A BLACK(c2)

jC€C3 RED(c,) A fl�D(, 2 ) A RE-Z RC ct) A 131.AC1<(c:) A ,LACK(c3)

3CIC2C 3 REID(ci) A Lnu(c:) A U3LACK(C3)

Figure D3a-1. A small rule space and its ge'iaral-to-specilic ordering.
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null description more general

I

Rule Space

training instances less general

Mitchell has pointed out that programs can take advantage of this partial
ordering to represent the set ii of plausible hypotheses very compactly. A set
of points in a partially ordered set can be representpd by its most general
and most specific elements. Thus, as shown in Figure D3a-3, the set I1 of
plausible hypotheses can be represented by two subsets: the set. of ruost general
elements in 11 (called the G set) and the set of most specific elements in iH
(called the S set). Once 11 has been represented in this manner, the rules of
generalization must be used to fill in the subspace between the G set and the
S set whenever the full 11 set is needed.

The Candidate-celimination Learning Algorithm

Mitchell's learning algorithm, called the candidate-elimination algorithm.,
takes advantage of the boundary-set representation 1or the set 1 of plausible

more general

H!

M iore specific

Figure D3a--3. Using the boundary sets to represent a subspace of the
rule spaen.
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hypotheses. Mitchell defines a plzusible hypothesis as any hypothesis that has
not yet been ruled oat by the data. The set t of all plausible hypotheses is
called the version space. Thus, the version space, 11, is the set of all concept
descriptions that are consistent with all of the training instances seen so far.

Initially, the version space is the complete rule space of possible concepts.
Then, as training instances are presented to the program, candidate concepts
are eliminated from the version space. When it contains only one candidate
concept, the desired concept has been found. The candidate-elimination
algorithm is a least-commitment algorithm, since it does not modify the set
il until it is forced to do so by the training information. Positive instances
force the program to generaiize-thus, very specific concept descriptions are
removed from the H set. Conversely, negative instances force the program
to specialize, so very general concept descriptions are removed from the 9
set. The version space gradually shrinks in this manner until only the desired
concept description remains.

To see how training instances force the version space to shrink, consider
once again the problem of teaching a program the flush concept in poker.
Suppose the program has already seen the positive training instance

{(2, clubs), (5, clubs), (7, clubs), (jack, club.), (queen, clubs)} * FLUSH.

Since the candidate-elimination algorithm is a least-commitment algorithm, it
makes the most specific possible assumption about the flush concept. Namely,
it sets up the S set to contain

S - {SUT(c,, clubs) A RANK(c,, 2) A
surr(c2, club.) A RANK(c,, 5) A
SUIT(c 3, clubs) A RANK(ci, 7) A
SUIT(c,, elub.) A RANK(c 4, jack) A
.SUIT(cs, club.) A RANK(cs, queen)).

This hypothesis is very specific indeed. It says that there is only one hand
that could possibly be a flush. At the same time, however, the candidate-
elimination algorithm makes the most general possible assumption, namely,
that every possible hand is a flush. The C set contains the null description.
This means that the version space-the H set-of all plausible hypotheses
contains S, G, and every hypothesis in between.

Now, suppose the positive training instance\

{(3, clubs), (8, club.), (10, clubs), (king, club.), act, clubs)} - FLUSH

is presented. The candidate-elimination algorithm realizes that its initial
assumption for the S set was too specific-there re other hands that can be

'/ 7
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flushes. Thus, it is forced to generalize S to contain, among other hypotheses,
the rule

S = (SUIT(c1 , clubs) A SUIT(c 2 , clubs) A SUIT(c 3 , clubs) A
SUIT(c 4 , clubs) A SUIT(cs, clubs)}.

The G set does not change. Suppose, however, that a negative training
instance

{(3, spades),(8, clubs),(10, clubs),(king, clubs), (ace, clubs)} 4 -FLUSH

is presented. This forces the candidate-elimination algorithm to realize that
its assumption for the G set, that any hand could be a flush, was %.rong. It
must specialize the G set in some way, so that it does not wrongly cla.qity
this hand as a flush.

In full detail, the candidate-elimination algorithm proceeds as follows:

Step 1. Initialize t1 to be the whole space. Thus, the C set contains only
the null description, and the S set contains all of the most specific
concepts in the space. (In practice, this is not actually done due to
the huge size of S. Instead, the S set is initialized to contain only /
the first positive example. Conceptually, however, H starts •it a. ]
the whole space.)

Step 2. Accept a new training instance. If the instance is a positive exam-
ple, first remove from G all concepts that do not cover the new/
example. Then update S to contain all of the maximally specific
common generalizations of the new instxmce and the previous ele-
ments in S. In other words, generalize the elements in S as little as
possible, so that they will cover this new positive example. This is
called the Update-S routine.

If the instance is a n~egative example, first remove from S all con-
cepts that cover this counterexample. Then update the G set to
contain all of the maximally general, common specializations of
the new instance and the previous elements in G. In other words,
specialize the elements in G as little as possible so that they will
not cover this new negative example. This is called the Update-C
routine.

Step 3. Repeat step 2 until G = S and this is a singleton set. When this
occurs, IH has collapsed to include only a single concept.

Step 4. Output It (i.e., either C or S).

Here is an example of a complete run of the candidate-elimination algo-
rithm. Suppose we have the following feature-vector representation language:
The instance space is a set of objects, each object having two features--size
and shape. The size of an object can be small or large, and the shape or an

/ ,-- ----
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(z Y)

(om ) I r e) (x circle) (m triangle)

J/

Figure D3a-4. The initial version space and the general-to-specific
partial order.

object can be circle, square, or triangle. Figure D3a-4 shows the entire rule 7
space for this representation language.

Each point in the rule space specifies either a variable or a value for both
of the features. If a feature is specified by a variable, then any value of that
feature can be applied.

Suppose we want to teach the program the concept of a circle. This is
represented as (z circle) where z represents any size. First we initialize the
H set to be the entire rule space. This means that the G set is

c {(x y)},

representing the moet general possible concept, and the'8 set is

S -((small square) (largo square) (small circle) (large circle)

(small triangle) (large triangl))}.

Now we present the first training instance: a positive example of the
concept, a small circle. The Update-S algorithm is applied in step 2. to yield:

C G {(z y)}

S = {(saall circle)}.

Figure D3a-5 shows the resulting version space. Solid lines connect con-
cepts that are still in the version space. In practical implementations of the
candidate-elimination algorithm, the version space is usually initialized at this
point rather than explicitly listing the entire instance space as in the step
above.

The second training instance is (large triangle) -a negative example of
the concept. This forces the G set to be specialized. Update-C is applied to
produce

G ((z circle) (small 7)}
S =-((emall circle))}.

Figure D3a-6 shows the resulting version space.

N
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M \=_( i y ) / •/

(a-m. ) (Ig. y) (x square) (x eirl6e) (x triangle)

(am. square) (Ig. square) (am. clircle) (1g. circle) (sm. triangle) (1g. triangle)

Figure D3a-5. The version space after the first training instance.

Notice how the (x y) .lescription was specialized in two distinct ways, so
that it no longer covered the negative example (large triangle). A third
possible specialization (N square) is not considered, since it was removed
from the version space during the previous training instance. Of course,
further specializations such as (small circle) are not considered because the
Update-G algorithm specializes as little as possible.

In this case, the G set grew larger as a result of the specialization. The
Update-C and Update-S algorithms often expand the size of the G and S
sets. It is the size ot these sets that limits the practical application oa this
algorithm.

Finally, we present the algorithm with another positive example: (large
circle). Update-S first prunes G to eliminate (small y), since it does nct
cover (large circle). Then S is generalized, as necessary:

G- = ((x circle))

S = ((x circle)).

Since G S, the algorithm halts and prints (z circle) as the concept.
It is possible to give intuitive interpretations of the G and S sets. The

set S is the set of sufficient conditions for a new example to be an instance

(x y)

(am.Y ) (1g. Y) (x square) (x circle) (x triangle)

(am. square) (1g. square) ý(m. eitcle) (1g. circle) (sm. triangle) (1g. triangle)

Figure D3a-S. The version space after two training instances.

________
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of the concept. Thus, after the second training instance, we know that if
the new example is al(small circle), it is an instance of the concept; (small
circle) is a sufficient condition for positive classification. The set G is the set
of necessary conditions. After the second training instance, we know that an
object either must be a circle or must be small in order to be an instance of the
concept. Neither of these conditions is sufficient. The algorithm terminates
when the necessary conditions are equal to the sufficient conditions-that is,
the algorithm has round a necessary and sufficient condition.

It is important to note that the candidate-elimination algorithm- conducts
an exhaustive, breadth-first search of the given rule space, guided only by
the training instances. This makes the algorithm infeasibly slow ror large rule
spaces. The efficiency of the algorithm can be improved (at the cost of possibly
failing to find the desired concept) by employing heuristics to prune the S and
G sets. We postpone further discussion of the strengths and weaknesses of
the candidate-elimination algorithm until after we have discussed the related
methods developed by Hayes-Roth, Vere, and Winston.

Methods Related to the Vertion-space Approach

Two learning methods similar to the Update-S procedure of the version-
space algorithm were developed prior to it. One method, termed interference
matching, was developed by Ilayes-Roth and McDermott (1977, 1978). The
other method, the mazimal unifying generalization method, was developed by
Vere (1975, 1078). These methods can both be viewed as implementations
of the Update-S procec.tire with respect to slightly different representation
languages in that they learn from positive training instances only.

Interference matching was developed to discover concepts expressed in
Hayers-Roth's P'arameterized Structural Representation (PSR), which is roughly
equivalent to an existentially quantified conjunctive statement in predicate
calculh's. Recall that Update-S seeks to generalize the descriptions in S
as little as possible in order to cover each new positive training instance.
When the descriptions are represented as predicate calculus expressions, this
is equivalent to finding the largest common subexpressions, because the largest
common subexpression is that subexpression for which the fewest conjunctive
conditions need to be dropped. As an example, suppose that the set S contains
the description

S = (BLOCK(m) A BLOCK(y) A RECTANGLE(x) A ONTOP(z-, y) A SQUARE(y)}

and the next positive training ifnstance (Jr) is

11 = BLOCK(w) A BLOCK(v) A SQUARE(w) A ONTOP(w,v) A RECTANCLE(v).

Update-S will produce the following common subexpressions:

S' = {o,,2},

• /
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where a, !!-LOCK(a) A BLOCK(b) A SQUARE(a) A RECTANCLE(b), and s2 =

BLOCK(c) A BLOCK(d) A ONTOP(c, d).
The a, description corresponds to the hypothesis that the ONTOP rela-

tion is irrelevant to the concept. The 92 description, on the other hand,
corresponds to the hypothesis that the shapes of the objects involved are
irrelevant. Notice that there is no consistent way to match 11 to S that
preserves a one-to-one correspondence of the variables z and y with u; and v;
either the rectangle and square predicates conflict (e.g., when z is matched
with w) or else the order of the arguments to ONTOP conflict (e.g., when x is
matched to v).

The interference-matching algorithm starts out as a breadth-first search
of all possible matchings of one PSR with another. The search proceeds by
"growing" common subexpressions until a space limit is reached. Unpromising
matches are then pruned with a heuristic utility function, and the growing
process continues in a more depth-first rashion. The utility of a partial match
is equal to the number of predicates matched less the number of variables
matched. If the space limit is approximately the same as the largest com-
mon subexpression, the algorithm becomes truly depth-first, since only one
subexpression "fits" within the space limit. Thus, the interference-matching
algorithm tends to find one good common subexpression rather than finding
all maximal common subexpressions (as in the Updatc-S algorithm).

Vere's algorithm for finding the maximal unirying generalization of two
first-ord, predicate-calculus descriptions is very similar to the interference-
matching algorithm. The representation language used by Vere, however,
permits-a many-to-one binding of parameters during the matching process
(Vere, 1975). Vere's method also conducts a breadth-first search of possible
matchings but does not do any pruning of this search.

Winston's Work on Learning Structural Descriptions from Examples

Winston's (1970) influential work on structural learning served as a precur-
sor to Lhe other learning methods described above. The method has the
same basic data-driven approach as in the version-space and related algo-
rithms: Training instances are accepted one at a time and matched against
the concept descriptions in the set ff. Unlike those breadth-first algorithms
(e.g., Update-§ and Update-G), however, Winston's system conducts a depth-
first search of, the concept space. Instead or maintaining a set of plausible
hypotheses, Winston's program uses the training instances to update a single
current concep description. This description contains all of the program's
knowledge abod t the concept being learned.

The task o' the program is to learn concept descriptions that charac-
terize simple to -block constructions. The toy-block assemblies are initially
presented to the :omputer as line drawings. A knowled ge-based interpretation
program convert these line drawings into a semantic-network description.
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Winston also uses this semantic-network representation to describe the cur-
rent concept and some background knowlcdge about toy blocks.

Figure D3a-7 shows a line drawing of an arch and the corresponding
semantic network. The network is roughly equivalent to the predicate-calculus
expression

ONE-PART-IS(arch, a) A ONE-PART-IS(arch, b) A

ONE-IIART-IS(arch, c) A IIAS-PROPERTY-OF(a, lying) A

A-KIND-OF(a, object) A MUST-BE-SUPPORTED-BY(a, b) A

MUST-BE-SUPPORTED-aY(a, c) A MUST-NOT-ABUT(b, c) A

MUST-NOT-ABUT(c, b) A LEFT-OF(b, C) A RIGIIT-OF(c, b) A

HAS-PROPERTY-OF(b, standing) A IIAS-PROP ERTY-OF(c, standing) A

A-KIND-OF(b, brick) A A-KIND-OF(c, brick),

along with statements of blocks-world knowledge such as

A-KIND-OF(brick, object)

A-KIND-OF(standing, properly)

and statements relating differen, predicates in the .epresentation languag,
such as

OPPOSITES(MUST-ABUT, MUST-NOT-ABUT)

MUST-FORM-OF(IS-SUPPORTED-BY, MUST-BE-SUPPORTED-BY).

A distinctive aspect of Winston's concept representation is that it allows
necessary conditions to be represented explicitly. For example, the condition
that in an arch the posts must not touch can be dizectly represented by a
MUST-NOT-ABUT link. This allows Winston's program tuo express necessary
and sufficient conditions in one combined network structure.

Winston's learning algorithm works as. follows:

Step I. Initialize the current concept description, H, to be the network
corresponding to the first positive training instance.

Step 2. Accept a new line drawing and convert it into a semantic-network
representation.

Step 3. Match the training instance with 1t (using a graph-matching algo-
rithm) to obtain the common skeleton. The skeleton is a maximal
common subgraph of the two graphs. Annotate the skeleton by
attaching comments indicating those nodes and links that did not
match.

Step 4. Use the annotated skeleton to decide how to modify the current
concept description H.

/'
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It the new instance is a positive example of the concept, then
generalis, H as necessary. The algorithm generalizes either by
dropping nodes and links or by replacing one node (e.g., cube) by a
more general node (e.g., brick). In some cases, the algorithm must
choose between these two generalization techniques. The program
chooses the less drastic method (node replacement) and places the

other choice on a backtrack list.

U the new instance is a negative example of the concept, a necessary
condition (represented by a must-link) is added to Fl. If there are
several differences between the negative training instance and 11,
the algorithm applies some ad hoc rules to choose one difference

to "blame" for causing the instance to be a negative instance.

This difference is converted into a necessary condition. The other
dilferences are ignored.

Repeat steps 2, 3, and 4 until the teacher halts the program.

Since the algorithm searches in depth-first fashion, it is possible for con-

tradictions to arise in step 4. For example, after seeing a negative training

instance such as shown in Figure D3a-8, the algorithm might assume in step 4
that the rý,ason this is not an arch is the triangular lintel rather than the fact

that the posts are touching. Subsequently, when the program sees the positive
instance shown in Figure D3a-9, a contradiction arises. When this happens,

the system backtracks to the last point at which a choice was made, and the

algorithm makes a new choice.

This learning algorithm is somewhat weak and ad hoc, since it does not

concern itself either with the possibility that the training instance matches

H in multiple ways or with the problem that there are multiple ways of

generalizing or specializing H. Winston makes two important assumptions

that allow this algorithm to ignore these problems. First, it is assumed

that the training instances are presented in good pedagogical order, so that

contradictions and choice-points are unlikely to arise; the teacher is assumed
to have chosen the examples so as to vary only one aspect of the concept in
each example. The second assumption is that the negative training instances

Figure na AImfI

Figure D3a-8. A near-miss• negative example of an ARCH.
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Figure D3a -9. A positive example of an ARCil.

are all near misses, that is, instances tha,. ;it 'larely fail to be exampies of
the concept in question. These two --ssumpdons permit the learning system
to perform fairly well in the domain of toy-block concepts.

WeaLnesses of the Version-space Approach (and Related Approaches)

There are several weaknesses in these methods that limit their practi-
cal application. This section discusses these problems and examines some
proposed solutions.\

Noisy training instances. A- with all data-driven algorithms, these
methods hve dilliculty with noisy training instances. Since these algorithms
seek to rind a concept description that is consistent with all of the train-
ing instances, any single bad instance (i.e., a raise positive or false negative
instance) can have a big effect. When the candidate ,:limination algorithm is
given a false positive instance, for example, the S set becomes overly general-
ized. Similarly, a false negative instance causes the C set to become overly
specialized. Eventually, noisy tiaining instances can lead to a situation in
which there are no concept descriptions that are consistent with all of the
training instances. In stch cnrtss, the C set "pa•ses" the S set, and the ver-
sion space of consistent concept descr'ptions becomes empty. The methods
of llayes-Roth, Vere, and Winston ,.io overgeneralize in the presence of false
positive training instances. "- .............. ... .

In order to learn in the pr,.-sence of noise, it is necessary to relax the
condition that the concept desc,.ptior.s be consistent with all of the training
instant(.s. One solution, proposed by Mitchell (1978), is to maintain several S
and G t? ts of varying consistency. The set So, for example, is consistent with
all of the pokitive exanmples, and the set S1 is consistent with all but one of
the 1msitive examples. hi general, each dlescription in the set Si is consistent
with all but i or the positive training instances. Similarly, each description
in the set G, is consistent with all but i of the negative training instances.
Figure DL3a-IO gives a schematic diagram of these sets. Mitchell provides a
f-irly efficient algorithm for updating these multiple boundary sets.
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Figure D3a-10. The multiple-boundary set technique.

When Go crosses 5o, the algorithm can conclude that no concept in the
rule space is consistent with all of the training-instances. The algorithm can
recover and try to find a concept that is consistent with all but one of the
training instances. If that fails, it can look for a concept' consistent with
all but two instances, and so forth. This approach to error recovery works
for learning problems- containing a few erroneous training instances, but it
requires a large amount of memory to store all of the S and G boundary sets.

Disjunctive concepts. A second, important weakness of these data-
driven algorithms is their inability to discover disjunctive concepts. Many
concepts have a disjunctive form. For instance, an uncle is either the brother
of a parent or the spouse of a sister of a parent:

UNCLE(x) = BROTUER(PARENT(z)) V

UNCLE(i) = SPOUSE(SISTER(PARENT(x))).

Parent itself might be expressed disjunctively as PAlRFNT(z) . FATHER(z) V
PARENT(z) == MOTHER(z). However, if disjunctions of arbitrary length are
permitted in the representation language, the data-driven algorithms described
above never generalize. In the candidate-elimination algorithm, for example,
the S -et will always contain a single disjunction ofi all of the positive train-
ing instances seen so rair. This is because the least generalization of a new
training instance and the current S set is simply the disjunction of the new
instance with the S set. Similarly, the G set will contain the disjunction of
the negation of each of the negative training instances. Unlimited disjunction
allows the partially ordered rule space to become infinitely "branchy."

/ 1.-
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The bas4ic uiil,'iculty is that all of these algorithmns are Icast-commitment
lgorithms that generalize only wNven they arefrcdt. ijnto pode

a way of avo3iding any generalization at all-so, the algorithms are never forced
to geucralize. In ord,!r to develop a useful technique fo. learning dIisjunctive
concepts, somne method must he( found for controlling the introduction or
disjunctions. The learning algorithms miust be guided toward generalizing in
ccrtajn ways to exclude the trivial di.,jnncti .on.

One solution (proposed in different forms by Michalski, l1`19, and by
Mitchell. 1978) is to emrploy a repren-entation langguage thiit does not contain

a dIisjunction operator and to perform repeated candidate-elimination runs
to find several conjunctive descriptions that together cover all of the train-.
ing instances. WVe repeated~ly i~ind a conjuncrtive concept dlescription that is
consistent with some of the positive training instances and all of the. nega-
tive training instances. The poý;itive instances that have been accounted for
are remnoved fronti foirther consid~eration, and the process is repeated until all
positive instances have been covered:

Step 1. Initiali7.e the S set to contain one positive training instance. G i3
initiali~ed to the null description-the mnost general concept.

Step 2. For each negative tiaining instance, apply thne Upd.1tc-13 algorithm
to G.

Step 3. Choose a description g front G as one conjunction ror the solution
set. Since Update-C has heca applied using all of the negative
instances, 9 covers no negative instances. Hlowever, g nmay cover
several of the positive instances. Remove from Further considera-
tion all positive training instances that are mnore specific than g.

Step .1. Repeat steps I through 3 until all positive trainint, instantces are
covered.

This process builds a disjunnnioll of descriptions that cavers ill bf the data.
It tends to fi nd a disj unction contaiin inp, only a few conj unctive terms.
Figure D3;i. I I is a schematic diagramn of how this process works.

The point s n in7, the first positive training, instannce selected in step 1. After
all of the negative instances have been processed with Update-C, g, is selected
from the G set in step 3. Notice that g, covers several positive instances in
addition to .st, but that not all positive instances are yet covered. rhe point 32

is then chosen and g._ is dcveloped. Sinrnilaryv. i1j is chosen and (j3 is developed.
As the figure shows, the conjunctive concept~s, yj, need not be disjoint. Also,

thne set of concepts qj, that is obtained by this procedure varies dependling on
the order inn which thle positive traninning iins~i~t'ics arc selected ill step I.

An algoritlninn very s6i i lar 0toni called the .11 algurith in, was developed
by Nlichalski (I1969~, 1975) for usew with an extended pronositionnal calculus
representation. The A'? alglorithmn makes use o' an additional heuristic in
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Figure D3a-l1. Schematic diagram of an iterative version-space algorithm
for finding disjunctive concepts.

step 1. It selects as a "seed" positive training instance one that has not
been covered by any description in any previous G set. This has the effect
or choosing training instances that are "far apart" in the instance space.
Larson (1977) elabolated Aq to apply it to an extended predicate-calcu!us
representation.

The effect of this iterative version-space approvzh is to find a descr;ption
with virtually the fewest number of disjunctive terms. Finding such a descrip-
tion is not always desirable. Programs searching for symmetrical descriptions,
for example, may hypothesize a disjunctive term for which there is, as yet, no
evidence. Consider how a program would learn thz direction of wind rotation
about a weather :ystem. After seeing the following two training instances

Instance 1. IIEMISPIIERE = north A PRESSURE = high
= ROTATION = clockwise

Instance 2. HEMISPHERE = south A PRESSURE h high

:= ROTATION = counterci, . -ise,

the program might hypothesize that

HEMISPHERE = north A PRESSURE • high V

HEMISPHERE = south A PRESSURE = low

=1 ROTATION = clockwist,

even though the simplest hypothesis would be

HEMISPHERE = north =f ROTATION = clockwise.

The problem of learning disjunctive concepts is still largely unexamined
by A' researchers.
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D3b. Data-driven Rule-space Operators

THE SECOND FAMILY of data-driven methods does not employ partial match-
ing to search the rule space. Instead, these methods develop a set of hypotheses
in a rule space that is separate from the instance space (i.e., the single-
representation trick is not used). The hypotheses are modified by refinement
operators, which r-re selected by heuristics that inspect the training instances.
The following is a general outline of these operator-based algorithms:

Step 1. Cather some training instances.

Step 2. Analyie the instances to decide which rule-space operator to apply.
Step 3. Apply the operator to make some change in the current set, H, of

hypotheses.
Repeat steps I through 3 until satisfactory hypotheses are obtained. -4

In this article, two systems are described that use this technique: BACON and
CLS.

BACONV

BACON is a set of concept-learning programs developed by Pat Langley
(1977, 1980). These programs solve a variety of single-concept learning tasks, "

including "rediscovering" such classical scientific laws as Ohm's law, Newton's
law of universal gravitation, and Kepler's law. The programs are also capable
of using the learned concepts to predict future training instances.

The idea underlying BACON is simple: The program repeatedly exam-
ines the data and applies its refinement operators to create new terms. This
continues until it finds that one of these terms is always constant. A single
concept is thus represented in the form term = constant value.

BACCPN uses a Feature-vector representation to describe each training
instance. A distinguishing aspect is that the features may take on continuous
real values as well as discrete symbolic or nume,ic values. For example,
suppose we want BACON to discover Kepler's law: The period of a planet's
revolution around the sun, p, is related to its distance from the sun, d, as
d3 /p2 = k, for some constant k. First, BACON is suppli.'d with training
instances of the form:.

Features A
Instante Planet p d

it Mercury 1 1
1, Venus 8 4
12 Earth 27 9
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BACON is told that p and d are dependent on the value of the planet
variable. Once BACON has gathered a few training instances, it examines
them to see if any of its rule-space operators are triggered. In this case, since
p and d are both increasing and are not linearly related, an operator that
creates the new term d/p is triggered. This rule-space operator is executed,
and the training instances are reformulated to give:

Features

Instance Planet p d d/p

It Mercury I 1 1.0
I1 Venus 8 4 .5
is Earth 27 9 .33

Again, BACON checks to see if any.of its rule-space operators are trig-
gered. This Lime, the product operator is executed to create the term (d/p)d,
since d and d/p are varying inversely. The data are reformulated to give:

Features

Instance Planet p d d/p d2/p

It Mercury I 1 1.0 t.0
12 Venus 8 4 .5 j2.0
12 Earth 27 9 .33 3.0

On the third iteration, BACON again checks to see Lr .ny operators apply.
The product operator is again triggec.td to create the term (d/p)(d2 /p). The
data are reformulated to give:

Features

Instance Planet p d d/p d 2/p! d;/p 2

it Mercury 1 1 1.0 1.0 1.0
12 Venus 8 4 .5 2.0 1.0
13 Earth 27 9 .33 3.0 1.0

BACON examines these data, and its constancy operator is triggered to
create the hypothesis that the d3 /p 2 term is constant. BACON then gathers
more data to test this hypothesis before it halts.

BACON's Rule-space Operators

The various IBACON prograins have different rule-space operators. Each
operator is stored as a production rule, of which the left-hand side performs
extensive tests to search forr possible patterns in the data and the right-hand
side creates the new terms. Hlere is a brief survey of the operators implemented
in the BACON.I program:

---- , : , • -- .. "..- .• . ,
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1. Constancy detection. This operator is triggered when some dependent
variable takes on the same value, v, at least two times. It creates the
hypothesis that this variable is always constant with value v.

2. Speeialization. This operator is triggered when a previously created
hypothesis is contradicted by the data. It specializes the hypothesis by
adding a conjunctive condition.

3. Slope and intercept term creation. This operator detects that two variables
are varying together linearly and creates new terms for the slope and
intercept of this linear relation.

4. Product creation. This operator detects that two variables are varying
inversely without a constant slope. It creates a new term that is the
product of the two variables.

5. Quotient creation. This operator detects that two variables are vary-
ing monotonically (increasing or decreasing) without constant slope. It
creates a new term that is the quotient of the two variables.

6. Modulo-n term creation. This operator notices that one variable, uv, takes
on a constant value whenever an independent variable, vg, has a certain
value modulo n. The new term vi-modulo-n is created. Only small values
of n are considered.

Eztension* to BACON

BACON.2 is an extended version of BACON. I that includes two additional
operators for detecting recurring sequences and tor creating polynomial terms
by calculating repeated differences. BACON.2 can solve a larger class of
sequence extrapolation tasks as a result.

BACON.3 is another extension of BACON.1 that uses hypotheses proposed
by the constancy-detection operators to reformulate the training instances.
For BACON.3 to discover the ideal gas law (PV/NT is equal to a constant),
for example, it is given the following training instances:

Features

Instance V P T N

1, .0083200 300,000 300 1
. .. .0062400 400,000 300 1 ---------

13 .0049920 500,000 300 1
14 .0085973 300,000 310 1

Is .0064480 400,000 310 1
Is .005158,1 500,0006 310 1
17 .0088747 300,000 320 1
Is .0066560 400,000 320 1
19 .0053248 500,000 320 1

\- . -.
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Feat ures

Instanci V P T N

125 .0266240 300,000 320 3
126 .0199680 400,000 320 3
127 .0150740 500t000 320 3

By applying the prod uct- creation operator followed by the constancy-
detection operator, BACON develops the hypothesis that PV is constant for
particular values or N and T. This hypothesis, which BACON must rediscover
for each particular value of N and T, is used to recast the data to give the
following derived training instances:

Features
Instance PV T N

2,496 300 1
2t 2,579.1999 310 1

13i 2,862.3099 320 1
14 4,991.9099 300 2

If 5,158.3999 310 2
it 5,324.7999 320 2f

617 7,488 300 3
Is 7,737.5999 310 3

I' 7,987.2 320 3

Each of these derived instances results from collapsing three or the original
training instances. Thus, E1 is derived by noticing that PV takes on the
constant value 2,496 in 11, 11, andl 13. By applying the slope- intercept operator
to these derivcd instances, BACON develops the hypothesis that PV/ T is
constant for particular values of N. It uses this hypothesis to recast the
training instances into the following form:

Features

Instance PV/T N
1" 8.32 1
IN 16.64 2 7
3 24.95 3

By applying the slope-intercept operator to these doubly dlerived instances,
13ACON develops the hypothesis that P V/NT is constant a~nd, thus, posits the
ideal gas law.
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BACON's Rule Space

What is the rule space that BACON is searching? BACON expresse
hypotheses as feature vectors, some of whose values are omitted (i.e., turned
to variables). For example, Kepler's law is expressed as

Features: Planet p d dip , d/p d3/p'

Values: . .. . . . 1.0

Thus, the rule space is the space of such feature ve.tors whose features are
any terms that BACON can create with its operators.

BACON conducts a sort of depth-first search through this space. The
conditions under which the operators are triggered are quite specialized. The
constancy-detcction operator, for example, only checks the values of the
most recently created dependent variable against the most recently varied
independent variable. Most of the other operators are invoked under similarly
constrained conditions.

Strengths and Weaknesses of BACON

BACON's primary strength is its ability to discover simple laws relating /

real-valued variables. Also of interest is BXCON's use of rule-space operators
to create new terms as combinations of existing terms. Further, the BACON.3
strategy of reformulating the training instances when partial regularities are
discovered may be important for future learning programs. Simon (1979) has
discussed BACON as a model of data-driven theory formation in science.

There are some dilliculties with the present BACON prograns, however.
First, the fact that the operators are evoked only under highly specialized
conditions causes the program to be sensitive to the order of the variables and
to the particular values chosen for the training instances. For some sets of
training instances, for example, BACON is unable to discover Ohm's law (see
Langley, 1980, p. 104). It is necessary to adjust the order of the variables and
the particular training instances to get BACON to discover concepts efficiently.
For example, when BACON is discovering the pendulum law, 40% more time
is required if the variables are poorly ordered. Similarly, it cannot handle
irrelevant variables well.

Second, BACON is unable to handle noisy training instances. The trig-
gering of the constancy detectors, for example, is based on the near equality
of the values seen in as few as two training instances. Such calculations are
highly sensitive .o nise. "The slope detectors are similarly sensitive.

Third, BACON can handle only relatively simple concept-formation tasks
involving nonnumeric variables. The program cannot, for example, discover
concepts that involve internal disjtnctiou (such as the concept of a red or
green cube). It is also unable to discover the simple concept underlying the

/
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letter sequence ABTCDSEFR ... and similar sequences appearing in Kotovsky
and Simon (1973).

In summary, BACON is interesting primarily for its use of rule-space
operators to create product, quotient, slope, and intercept terms and for its
ability to recast the training instances on the basis of developed hypotheses.

CLS/IDS

CLS (Concept Learning System) is a learning algorithm devised by Earl
Hunt (see Hunt, Marin, and Stone, 1966). It is intended to solve single-
concept learning tasks and uses the learned concepts to classify new instances.
A more recent version of the CLS algorithm, ID3, was developed by Roes
Quinlan (1979, in press). In this article, we discuss the lD3 algorithm and its
application to data compression and concept formation.

Like BACON, ID3 uses a feature-vector representation to describe the
training instances. The features must each have only a small number of pos-
sible discrete values. Concepts are iepresented as decision trees. For example,
if the features of size (small, large), shape (circle, square, and triangle), and
color (red, blue) are used to represent the training instances, the concept of a
red circle (of any size) could be represented as the tree shown in Figure D3b-t.

An instance is classified by starting at the root of the tree and making
tests and following branches until a node is arrived at that indicates the class
as YES or NO (see Article X.I)). For example, the instance (large, circle, blue)
is classified as follows. Starting with the root node (shape), we follow the
circle branch to tlhe color node. From the color node we take the blue branch
to a NO node indicating that this instance is not an instance of the concept
of a red circle.

Decision trees are inherently disjunctive, since each branch leaving a deci-
sion node corresponds to a separate disjunctive case. The tree in Figure D3b-l,

Shape
trianle circle

N O sq ar C o lo r

NO /
O d, blue

YES NO

Figure D3b-l. Decision tree for the concept of a red circle.
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for example, is equivalent to the predicate calculus expression:

"9SHAPE(z, triangel) V -"SHAPE(Z, sfwre) V

SAPE(m, eirce) A (COLOR(Z, red) V .COLOR(X, blue)].

Consequently, decision trees can be used to represent disjunctive. concepts
such as large circle or smal square (see Fig. D3b-2).

A drawback of decision trees is that there are many possible trees cor-
responding to any single concept. This lack of a unique concept representation
makes it difficult to check that two decision trees are equivalent.

The CLS Learning Algorithm (as Used in IDS)

The CLS algorithm starts with an empty decision tree and gradually
refines it, by adding decision nodes, until the tree correctly classifies all of the
training instances. The algorithm operates over a set of training instances, C,
as follows:

Step 1. It all instances in C are positive, then create a YES node and halt.
It all instances in C are negative, create a NO node and halt.
Otherwise, select (using some heuristic criterion) a feature, F, with
values vi, . . . , v,, and create the decision node:

F

Step 2. Partition the training instances in C into subsets CI, C2 , ...

according to the values of V.

Step 3. Apply the algorithm recursively to each of the sets Ci.

c)•ircle4 square

smalllarg small
i NO \r 7

YES NO NO YES

Figure D3b-2. Decision tree for a disjunctive concept.
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The criterion used in step I by [D3 is to choose the feature that best dis-
criminates between positive and negative instances. Hunt et al. (1966) describe
several methods for estimating which feature is the most discriminatory.
Quinlan chooses the feature that leads to the greates• reduction in the esti-
mated entropy of information or the training instances in C. The exact crite-
rion is to choose the feature F (with values vi, v2 , . .. ,t) that minimizes

(V+, + V-)(V V)

where V•" is the number of positive instances in C with F vi v, and V7 is
the number of negative instances in C with F = vi.

This CLS algorithm can be viewed as a refinement-operator algorithm
with only one operator:

Specialize the current hypothesis by adding a new condition (a new
decision node).

The CLS algorithm repeatedly examines the data during step I to decide
which new Lgndition should be added. The final decision tree developed by
CLS is a generalization of the training instances, because in most cases not
all features present in the training instances need to be tested in the tree.
Thus, CLS bcgins with a very general hypothesis and gradually specializes it,
by adding conditions, until a consistent tree is found.

The IDS Learning Algorithm

The CLS algorithm requires that all of the training instances be available
on a random-access basis during step 1. This places a practical limit on the siz•
of the learning problems that it can solve. The ID3 algorithm (Quinlan, 1979,
in press) is an extension to CLS designed to solve extremely large concept-
learning problems. It uses an active experiment-planning approach to select
a good subset of the training instances and requires only sequential access to
the whole set of training instances. Here is an outline of the 1D3 algorithm:

Step 1. Select a random subset of size W of the whole set of training
instances (W is called the window size, and the subset is called the
windowl).

Step 2. Use the CLS algorithm to form a nile to explain the current window,

Step 3. Scan through allof the training instances serially to find exceptions
to the current rule.

Step 4. Form a new window by combining some or the training instances
from the current window with sonic of the exce'ptions obtained in
step 3.

Repeat steps 2 through 4 until there are no exceptions to the rule.
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Quinlan has experimented with two different strategies for building the
new window in step 4. One strategy is to retain all of the instances from the
old window and add a user-specified number of the exceptions obtained from
step 3. This gradually expands the window. The second strategy is to retain
one training instance corresponding to each leaf node in the current decision
tree. The remaining training instances are discarded from the window and
replaced by exceptions. Both methods work quite well, although the second
method may not converge if the concept is so complex that it cannot be
discovered with any window of fixed size W.

Application of the IDS Algorithm

The ID3 algorithm has been applied to the problem of learning classifi-
cation rules for part of a chess end-gam4e in which the only pieces remaining
are a white king and rook and a black king and knight. [D3 has discovered
rules to describe the concept of "knight's side lost (in at most) n moves" for
in = 2 and n = 3. Table D3b-I shows the results of these processes.

The features describing the board positions have been chosen to capture
,patterns believed to be relevant to the concept of lost in n moves. The actual
raw data for the 1, ;t in 2 moves concept comprise 1.8 million distinct board
positions. By choosing appropriate features, Quinlan was able to compress

:these into 428 distinct feature vectors. This is an excellent example of the
importance to concept learnting of good representation and of knowledge-based
interpretation of the raw data. Quinlan (in press) points out that an important
task for future learning research is to develop a program that can discover a
good set of features.

Strength# and Weaknesaes of CLS and IDS

The ID3 and CLS programs with their very simple representations and
straightforward learning algorithms perform impressively on the single-concept

TABLE D3b-I
The Application of ID3 to a Chess End-game

Number of Number of Size of Solution
training instances features decision tree time

Lost in 2 moves 30,000 25 334 nodes 144 second0s
Lost in 2 moves 428 23 83 nodes 3 seconds'
Lost in 3 moves 715 39 177 nodes 34 seconds1

aUsing PASCAL implementation on a DIC KL-10.
1 Using PASCAL implementation on a CDC CYBER 72.
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learning problem. Much of the power of the 1D3 algorithm derives from its
sophisticated selectiott of training instances. This form of instance selection
has been termed expectation-based filtering by Lenat, Hayes-Roth, and Klahr
(1979). The basic value of expectation-based filtering is that it focuses the
attention of the program on those training instances that violate its expec-
tations. These are precisely the training instances needed to improve the
program's representation of the concept being learned. Even thi6 simple form
of experiment planning allows ID3 to solve large learning problems efficiently.

One of the chirf difficulties of the CLS/ID3 method is that the repre-
sentation for learned concepts is a decision tree, and decision trees are difficult
to check for cquivalenc.-. What is more important, it is difficult for people to
understand the learned concept when it is expressed as a large decision tree.

References

The best discussion of BACON is Langley (1980). The ID3 algorithm is
well described in Quinlan (in press).
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D3c. Concept Learning by Generating and

Testing Plausible Hypotheses

TIIB two model-driven approaches discussed in Article XIV.DI on issues--
generate-and-test and schema instantiation--have received little attention
from people doing learning research. This article describes one method,
developed by l)ietterich and Michalski, that discovers a single concept from
examples by model-driven generate and test. In spite of using only a very
simple model, this method exhibits the strengths and weaknesses that are
typical of model-driven methods: It is quite immune to noise but cannot
incrementally modify its concept description as new training instances become
available.

The INDUCE .R Algorithm

Dictterich and Michalski (1981) address the problem of learning a single
concept from positive training instances only. Their program, INDUCE 1.2,
is intended to be applied in strutctural-learning situations, that is, situations
in which each training instance has some internal structure. Winston's toy-
block constructions, for example, are structural training instances; a toy-block
tonstruction is represented as a set of nodes connected by structural relations
like ONTOP, TOUClt, and SUPPORTS (see Article XIV.D3&). Dietterich and
Michalski's model, which guides the search for generalizations, expects the
learned concept to be a conjunction involvin6 both structural relations and
ordinary features.

INDUCE 1.2 seeks to find a few concepts in the rule space, each of which
covers all of the training instances while remaining as specific as possible.
This learning problem is similar to the problem of finding the S set in the
candidate-elimination algorithm. INDUCE L2, however, applies some model-
based heuristics to drastically prune the S set so that only a few generaliza-
tions are discovered.

The program assumes that the training instances have been transformed
so that they can be viewed as very specific points in the rule space (i.e., it uses
the single-representation trick). A random sample of the training instances
is chosen. These points in rule space serve as the starting points for a beam
search upward through the rule space, that is, from the very specific train-
ing instances toward more general concepts. The concept descriptions are
generalized by dropping conjunctive conditions and adding internal disjunc-
tive options until they cover all of the training instances. fly starting at the
most specific points in the rule space and stopping as soon as it finds concepts
that cover all of the training instances, INDUCE 1.2 is guaranteed to find the
most specific concepts that cover the data.

411
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The beam-search process has the following steps:

Step 1. Initialize. Set It to contain a randomly chosen subset of size W of
the training instances (W is a constant called the beam width).

Step 2. Generate. Generalize each concept in 11 by dropping single condi-
tions in all possible ways. This produces all the concept descrip-
tions that are minimally more general than those in I1. These form
the new H.

Step 3. Prune implausible hypotheses. Remove all hut W of the concept
descriptions from 11. The pruning is based on syntactic charactcris-
tics of the concept description, such as the number of terms and
the user-defined cost of the terms. Another criterion is to maximize
the number of training instances covered by each element of If.

Step 4I. Test. Check each concept description in 11 to see if it covers all of
the training instances. (This information was obtained previously
in step 3.) If any concept does, remove it from t[ and place it in a
set C of output concepts.

Repeat steps 2, 3, and 4 until C reaches a prespecilied size limit or H'
becomes empty.

A schematic diagram of the beam-search process is shown in Figure D3c-1.

Extensions to the Basic Algorithm

Structural learning problems of the kiml INDUCE 1.2 was designed to
attack ;equire binary (and higher order) predicates to represent the desired

more general

7
o Pruned more specific

0 Not Pruned
X Placed in C

Figure 1)3c-1. A schematic diagram of INDUCE 1.2's beam search.



D3c Concept Learning by Generating and Testing Plausible Hypotheses 413

concepts. The binary predicates are needed to express relaLionships among
the parts (e.g., toy blbcks) that. make up each training instance. In Winston's
arch training instances, for example, binary predicates could be used to rep-
resent the fact that two blocks are touching-TOUCII(a, b)-or that one block
is suppsorting another-.-sUPPORTS(a, b). Unary predicates and functions a-e,
of course, still needc I as well. Typically, they represent the attributes of
the parts of .in instance. In Winslon's arches, for example, unary predicates
ct;,.ld represent the sise and shape of each b~ock. The syntactic distinction
betvween unary and binary predicates thus corresponds to a semantic distine-
tio.i betv,ee- feature values and binmry relationships.

Although it is possible to represent structural relationships using only
unary predicates or functicns, such a representation is cumbersome and un-
natural. Consequently, this distinction-by which binary an" higher order
predicates correspond to structural relationships and unary predicates and
functions correspond to feature values--holds in moast structural learning
situations.

Dietterich and Michalski take advantage of this dichotomy to improve
the efficiency of INDUCE 1.2's rule-space search. Two separate rule spaces
are used. The first rule space, called the structure-only space, is the space of
all concepts expressible using'only the binary (and higher order) terms in the
representation language. The training instances are abstracted into this spaceb
(by dropping all unary predicates and ;unctious), and then the generate-and-
test beam search is applied to this abstract rule space.

Once the set, C, of candidate structure-only concepts is obtained, each
concept, ci, in C i- used to define a new rule space, consisting of all concepts
expressible in terms of the attributes of the subobjects (e.g., blocks) referred
to in ci. This space can be represented with a simple featu re-vector repre-
seitation. The trdtining instances am'e transformed into very specific points in
this space, and another beam search is conducted to find a set, C', of plausible
concept descriptions. The descriptions in C' specify the attributes for the
subobjects referred to in ci. Take• together, one concept in C' combined
with ci provides a completc concept description.

As an example of this two-spa e approach, consider the two positiv!
training instances depicted below:

Instance 1. 3 u,v: LARGF.(u) A CTRCLE(u) A

[,,L GE(v) CIRCLE(u) A .ONTOP(u, v).0_
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Instance 2. 3 w, x, I : SMAI.L(u) A CIRCLE(w) A
0 LARGE(z) A SQUARlE(z) AD LARGE(Y) A SqUARZ(y) A

ONTOP(w, z) A ONTOP(z, y).

When these two training instances are translated into the structure-only rule
space, the following abstract training instances are obtained:

Instance 1'. 3 u, v : ONTOP(u, v).
Instance 2'. 3 w, z, y : ONTOP(w, z) A ONTOP(z, y).

The INDUCE 1.2 beam search discovers that C = (ONTOP(u, u)} is the only,
least general, structure-only concept consistent with the training instances.
Now a uew attribute-vector rule space is developed with the features of u
and v:

(SIZE(u), SHAPE(U), SIZE(v), SHAPE(u)).

The training instances are translated to obtain:

Instance I". (large, circle, large, circle).

Instance 2.1". (small, circle, large, square).
Instance 2.2". (large, square, large, square).

Notice that tLo alternative training instances are obtained from instance 2',
since ONTOP(u, v) can match instance 2 in two possible ways (u bound to w, v
bound to z; or u bound to x, v bound to y). During the beam search, only one
of these two instances, 2. 1" and 2.2", need be covered by a concept description
for that description to be consistent.

The second beam search is conducted in this feature-vector space, and the
concepts (large, ., large, .) and (a, circle, large, .) are found to be the least
general concepts that cover all of the training instances ("e" indicates that the
corresponding feature is irrelevant). By combining each of these feature-only
concepts with the structure-only concept ONTOP(u, v), two overall consistent
concept descriptions are obtained:

C,: 3 u, v ONTOP(u, v) A ,.ARCr(u) A LARG.(u),

2; 3 u, u ONTOP(u, v) A CICCL(t,) A LARGE(u).

These correspond to the observations that in both instance I and instance 2
there are (Cl) "always a large object on top of another large object" and (CG)
"always a circle on top of a large object."
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Strengths and Weakneajes of the INDUCk 1.2 Approach

The basic algorithm suffers from the absence of a strong mode! to guide
the pruning of descriptions in step 3 and the termination of the search in
step 4. The present syntactic criteria, of minimizing the number of terms in
a proposed concept, minimizing the user-defined cost of the terms, and max-
imizilng the number of training instances covered, are very weak. Dietterich
and Michalski claim that domain-specific information could easily be applied
at this point to improve the model-based pruning.

A second weakness is that step 2 involves exhaustive enumeration of all
possible single-step g-neralizations of the hypotheses in H. This can be very
costly in a large rule space. The method or plausible generate and test works
best if the generator can be constrained to generate only plausible hypotheses.
The generator in INDUCE 1.2 relies on a subsequent pruning step, which is
quite costly.

A third weakness of the method is that, because it prunes its search, it is
incomplete (see Dietterich and Michalski, 1981). It does not find all minimally
general concepts in the rule space that cover all of the training instances.

As with all model-driven methods, this approach does not work well in
incremental learning situations. All of the training instances must be available
to the learning algorithm simultaneously.

The advantages of the algorithm are that it is faster and uses less memory
than the full version-space approach. As with all model-based methods,
INDUCE 1.2 has good noise immunity. In particular, if INDUCE 1.2 is to be
given noLsy training instances, then step 4 can be modified to include in C
the concepts that cover moat, rather than all, of the training instances.

References

Dietterich and Michalski (1981) describe INDUCE 1.2.



D3d. Schema Instantiation

SCI1EMA-INSTANTIATION techniques have been used in many Al systems
that perform comprehension tasks such as image interpretation, natural-
language understanding, and speech understanding. Few learning systems
have employed schema-instantiation methods, however. These methods are
useful when a system has a substantial number of constraints that can be

grouped together to form a schema, an abstract skeletal rule. The search of
the rule space can then be guided to only those portions of the space that fit
one of the available 3chemas. In this section, we descri'ae one learning system,
SPARC, that uses schema instantiation to discover single concepts.

Discovering Rules in Eleuji. with SPARC

l)ietterich's (1179) SPARC system attempts to solve a learning problem
that arises in the card game Eleusis. Eleusis (developed by Robert Abbott,
1977; see also Gardner, 1977) is a card game in which players attempt to
discover a secret rule invented by the dealer. The secret rule describes a linear
sequence of cards. In their turns, the players attempt to extend this sequence
by playing additional cards from their hands. The dealer gives no information
aside from indicating whether or not each play is consistent with the secret
rule. Players are penalized for incorrect plays by having cards added to their
hands. The game ends when a player empties his hand.

A record of the ploy is maintained as a layout (see Fig. D3d-1) in which the
top row, or main line, contains all of the correctly played cards in fequence.
Incorrect cards are placed in side lines below the main-line card that they
follow. In the layout shown in Figure D3d-I, the first card correctly played
was the 3 of hearts (38). This was followed by another correct play, the 9 of
spades (9S). Following the 9, two incorrect plays were made (JD and 5D) before
the next correct card (4C) was played successfully.

Main line: 3H 9S 4C 9D 2C 1OD 8! 78 2C 58
Side lines: JD AS AS 10

SD 81 to0
QD

If the last c,..d is odd, play black; if the last card is even, p141 red.

Figure D3d-l. An Eleusis layout -nd the corresponding
secret rule.

416
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The scoring in Elcusis encourages 'the dealer to choose rules of inter-
mediate diffculty. The dealer's score is determined by the difference between
the highest and lowest scores of the players. Thus, a good rule is one th.'t is
easy for some players and hard for others.

Schemas in Elctuia

In ordinary play of EVeusis, certain classes of rules have been observed.
Dietterich has identified three rule classes and developed a parameterized
schema for each:

1. Periodic rules. A periodic rule describes the layout as a sequence of
repeating features. For example, the rule Play alternating red and black
cards is a periodic rule. Dietterich.'s rule schema for this cla.s can be
described as an N tuple of conjuictive descriptions-

(Ci, C,...,CN).

The parameter N is the length of the period (the nwmber of cards before
the period starts to repeat). The above-mentioned periodic rule would
be represented as a 2-tuple:

(RED(card), IILACK(card)).

More complex periodic rules may refer to the previous periods. "jhus,
the rule

(RANK(eard.) •> RANK(card.I), RANK(card.) • RANK(cardi._))

describes a layout composed of alternating ascending and descending
sequences of cards.

2. Decomposition rules. A decomposition rule describes the layout by a
set of i/-then rules. For example, the rule 1/ the last card is odd, play black;
if the last card is even, play red is a decomposition rule. The rule schema
for this class requires that the set of il-then rtAls have single conjunctions
for the if and then parts of each nIL. The if parts must be mutually
exclusive, and they must span all possibilities. The above-mentioned rule
can be written as:

ODD(card_.) = BLACK(card.) V
EVEN(card,_t) J= RED(card,).

3. Disjunctive rules. The third clas of rules includes any rules that can
be represented by a single disjunction of conjunrtioins (i.e., an expression
in disjunctive normal form, or DNF). For example, the rule Play a card
of the some rank or the same suit as the preceding card is a DNF rule. This
is represented as:

RA:NK(card,) RANK(card-t) V SUIT(car4-) = SUIT(card.-,).
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Each schema has a few parameters that control its application. The N
(length of period) parameter of the period schema has already been described.
Each schema also has a parameter L, called the lookback parameter, that
indicates how many cards back into the past the rule may consider. Thus,
when L = 0, no preceding cards are examined. When L - I, the teaturea of
the current card are compared with the previous card, and expressions such
as RANK(cardi) 2 R.ANK(cardi_.) are permitted. Larger values of L provide
for even further lookback.

Searching the Rule Space Using Schema.

Each schema can be viewed as having its own rule space--the set oa all
rules that can be obtained by instantiating that schema. SPARC uses the
single-representation trick to reformulate the layout as a set of very specific
rules for each of the schema-specific rule spaces. The overall algorithm works
as follows:

Step 1. P4rameterize a schema. SPARC chooses a schema and selects par.
ticular values for the parameters or that schema.

Step 2. Interpret the training instances. Transform the training instances
(i.e., the cards in the layout) into very specific rules that fit the
chosen schema.

Step 3. Instantiate the schema. Generalise the trans"ormed training instances
to fit the schema. SPARC uses a schema-specific algorithm to
accomplish this step.

Step 4. Evaluate the instantiated seAemi%.. Determine how well the schema fits
the data. Poorly fitting rules are discarded.

SPARC conducts a depth-first search of the space oa all parameterizations
of all schemas up to a user-specified limit on the magnitudes or the parameters.
Notice that a separate interpretation step is required for each parameterized
schema.

When these steps are applied to the game shown in Figure D3d-l, for
example, step I eventually chooses the decomposition schema with L-- I.
Step 2 then converts the training instances into very specific rules in the cor-
responding rule space. In this case, the first five cards produce the training
instances shown below. The instances are represented by the feature vec-
tor (RANK, SUIT, COLOR, PARITY) to describe each card. (SPARC actually
generates 24 features to describ. each training instance.)

Instance I (positive). (3, hearts, red, odd) , (9, spades, black, odd).
Instance 2 (negative). (9, spades, black, oJd) • (jack, diamonda, red, odd).
Instance 3 (negative). (9, spades, black, odd) * (5, diamonds, red, odd).
Instance 4 (positive). (8, spades, black, odd) = (4, clubs, black, even).
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Step 3 produces the following instantiated schema (with irrelevant features
indicated by *):

(.,.,., odd) =* (.,., b6"k, .) V (., ., 0, even) - (.,.,.ed,e).

Step 4 determines that this rule is entirely consistent with the training in-
stances n.nd is syntactically simple. Consequently, the rule is accepted as a
hypothesis for the dealer's secret rule.

The schema-instantiation method works well when step 3, the schema-
instantiation step, is easy to accomplish. A good sche.. provides many
constraints that limit the size of its rule space. In SPARC, for example, the
periodic and decomposition schcmas require that their rules he made up of
single conjuncts only. This is a strong constraint that can be incorporated into
the model-fitting algorithm. On the other hand, the DNF schema provides
few constraints and, consequently, an efficient instantiation algorithm could
not be written. The general-purpose Aq algorithm (see Article XIV.D3s) was
used instead.

Strength* and Weaknesses of SPARC

The schema-instantiation method used in SPARC was able to find plaus:ble
Eleusis rules very quickly. This is the primary advantage of the schema-
instantiation approach-large rule spaces can he searched quickly. A second
advantage of this approach is that it has good noise immunity. The schema-
instantiation process has access to the full set of traininig instances, and, thus,
it can use statistical measures to guide the se:.ch of rule space.

There are three important disadvantages of the schema-instantiation
method as used in SPARC. First, it is difficult to isolate a group of con-
straints and combine them to form a schema. The three schemas in SPARC,
although they cover most "secret rules" pretty well, are known to miss some
important rules. The task of coining up with new schemas, however, is par-
ticularly difficult. A second problem with the schema-instantiation approach
is that special schema-instantiation algorithms must be developed for each
schema. This makes it difficult to apply the approach in new domains. The
third disadvantage is that separate interpretation methods need to be devel-
oped for each schema. This was less of a problem in the Eleusis domain, be-
cause the interpretation processes for the difTerent schemas were very similar.

References

Diettcrich (1970) is the original description of the SPARC program. Diet-
terich (1980) is a more accessible source. See also Dietterich and Michalski
(in press).



D4: Learning Multiple Concepts

A FEW Al learning systems have been developed that discover a set of con-
cepts from training instances. These systems pea rorm taskb, such as disease
diagnosis and ma.s-spectrometer simulation, for which a single concept or
classification rule is not sulficient.

To undcrstand the problems of learning multiple concept-, it is helpful
to review single-concept learning. In single-concept learn~ng (see Sec. XtV.D3),
the learning element is presented with positive and negative instances of some
concept, and it must lind a concept description that effectively partitions the
space of all instances into two regions: positive and negative. All instances in
the positive region are believed by the learning system to be examples of the
single concept (see Fig. D4-1).

In multiple-concept learning, the situation is slightly more complicated.
The learning element is presented with training instances that are instances
of seve4Al concepts, and it must find several concept descriptions. For each
concept description, there is a corresponding region in the instance space (see
Fig. D4-2). An important multiple-concept Iearning problem is the problem
of discovering diseare-diagnosis rules from training itistanics. The learning
element is presented with training instances that each contain a description
of a patient's symptoms and the proper diagnosis as determiamed by a doctor.
The program most discover a set of rules of the form:

(description ot symptonm for disease A) = Disease ip A,

(description of symptoms for disease B) z Disease is B,

(description of symptoms for disease N) '. Disease is N.

lnstamne Space

Positive Region

Negative Region

Figure D4-1. A single concept viewed as a region
of the instance space.
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Insanwce Space

A0
Figure D4-2. Regions or the instance space corre-

sponding to different rules.

The left-hand side of each rule is a concept description that corresponds to
a region in the instance space of all possible symptoms (see Fig. D4-2). Any
"patient whose symptoms rall in region A, for example, will be diagnosed an
having disease A.

An important issue arising in multiple-concept learning is the problem
of overlapping concept descriptions-that is, overlapping left-hand sides of
diagnosis rules. In Figure D4-2, for example, when a patient's symptoms fall
in the area where regions A and B overlap, the system will diagnose the patient
as having both diseases A and B. This overlap may be correct, since there
are often cames in which a patient has more than one disease simultaneously.
On the 'other hand, it is often the case in multiple-concept problems that
the various classes are intended to be mutually exclusive. For example, if',
instead or diagnosing diseases, the performance task is to classify images of
handwritten char-cters, it is important that the system arrive a. a unique
classirication for each character.

The problem of overlap among multiple concepts can lead to integration
problems, as described in Article XIV.A. When a new rule or concept is added
to the knowledge base in a multiple-concept system, it may be necessary to
modify the left-hand sides of existing rules, particularly if the concept classes
are intended to be mutually exclusive.

The systems described in this section differ from those described in the
Section XIV.D5 on multiple-step tasks in that the performance tasks dis-
cussed here can all be accomplished in a single step. The various disease-
classilication rules, for example, can be applied similtaneously to classify a
patient's symptoms. Tasks for which this is not the case-like playing check-
ers or solving symbolic integration problems-are discussed in Section XIV.D3.

We first discuss the work of Michalski and his colleagues on the AQIU
progr.m, which learns a set of classification rules for the diagnosis of soiybean
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diseases. Second, we describe the Meta-IIENCRAL system, which learns a set
of cleavage rules that describe the operation of a chemical instrument called
the mas spectrometer. Finally, the AM system, which discovers new concepts
in mathematics, is discussed in some detail. Since these systems do not all
address the same learning problem, we begin each article with a description of
the particular learning problem being attacked and then discuss the methods
employed to accomplish the learning.

f



D4a. AQi1

MIC1IALSKI and his colleagues (Michalski and Larson, 1978; Michalski and
Chilausky, 1980) have developed several techniques for learning a sct of classi-
fication rules. The performance element that applies these rules is a pattern
classifier that takes an unknown pattern and classifics it into one of n classes
(see Fig. D4a-1). Many performance tasks, such a optical character recogni-
tion and disease diagnosis, have this form.

The classification rules are learned from training instances consisting of
sample patterns and their correct classifications. For the classifier to be as
efficient as possible, the clawsification rules should test as few features of the
input pattern as necessary to classify it reliably. This is particularly relevant in
areas like medicine, where the measurement of each additional feature of the
input pattern may be very costly and dangerous. Consequently, Michalski's
learning program AQIlI (Michalski and Larson, 10378) seeks to find the moat
general rule in the rule space that discriminates training instances in clans ci
from all training instances in all other classes cy (i 3 j). Dietterich and
Michalski (1981) call these ducriminant descriptions or discrimination rules,
since their purpose is to discriminate one class from a predetermined set of
other classes.

Using the Aq Algorithm to Find Discrimination Ruies

The representation language used by Michalski to represent discrimina-
tion rules is VL1 , an extension of the propositior.al calculus. VLt is a fairly rich

Input Pattern Classifier Output Clapsifleation 1 k I #c"

Figure Da-l. he n-category classification task.
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language that includes conjunction, disjunction, and set-membership opera-
tors. Consequently, the rule space or all possible VL 1 discrimination rules is
quite large. To search this rule space, AOLI uses the A1 algorithm, which
is nearly equivalent to the repeated application or the cindidate-elimination
algorithm (see Article XIV.D3a). AQ11 converts the problem or le-%rning dis-
crimination rul-s ino a series of single-concept learning problems. To End a
rule for class c,, it considers all or the known instance- in class ci as positive
instances and all other training instances in all of the remaining classes as
negative instances. The A, algorithm is then applied to find a description
that covers all or the positive instances without covering any of the negative
instances. AQII seeks the most general such description, which corresponds
to a necessary condition for clas membership. Figure D4a-2 shows schemati-

cally how this works. The dots represent known training instances, and the
circle represe-tsq the set of possible training instances that are covered by the

description of clams cl.
For each class c,, such a 'concept" is discovered. The result is shown

schematically in Figure D4a-*
Note that the discrimination rules may overlap in regions of the instance

space that have not yet been observed. This overlap is useful because it
allows the performance element to be somewhat conservative. In the areas in
which the discrimination rules are ambiguous (i.e., overlap), the performance
element can report this to the tiscr rather'than assign the unknown instance
to one arbitrarily chosen class.

AQI I also has a method for rinding a nonoverlapping set of classification
rules. Since the Aq algorithm uses the single-represer.tation trick, it can accept
not only single points in the instznce space (-s rep-, sented by very specific
point, in the rule space) but laso generalized "instances" that are conjuncta

Instance Space• ,
00

0

Figure D -2. Learning c, by treating 11 other classes
as negative instances.



D4a AQ11 425

Instance Space

00

000 Sc 2

"" * 0

0

Figure D4a-3. Finding single concepts for each clas.

in the rule space corresponding to sets of tra;ning instances. This allows AQII
to treat the concept descriptions themselves as negative examples when it is
!earning the concept description for a subsequent class. Thus, in order to
ootain a ionoverlapping set oa discrimination rules, AQI 1 takes as its poeitive
instances all known instances in c, and as its negative instances all known
instances in c (ij yk i) plus all conjuncts that make up the discrimination
rules tor previously processed clhases ck (k < i). The resulting di-joint rules
are shown schematically in Figure DUa-4 (assuming the classes were processed
in the order cl, cs, c3).

The rules that are developed split up the unobserved part of the instance
space in such a way that el gets the largest share, c2 covers Any space not
covered by el, c covers any space not covered by cl ol c2 , and so on. The way
in which the space '., iv,;,4 . :pends on the order in which the classes are

Instance Space

0

00 C`2..... . .
• €1S

0.0

C3 e0

Figure D4a-4. Finding nonoverlapping classification rules.
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processed. A performance element that uses such a disjoint set of conceptU
will be reckless in thO sense that it will assign an unknown instance to an
arbitrary clas. The classifier arbitrarily prefers cl to e2 , c2 to c3, and So on.

The discrimination rules developed by AQI I correspond (roughly) to the
set of most general descriptions consistent with the training instances-the
G set in the candidate-elimination algorithm (see Sec. XIV.Ds). In many
situation., it is also good to develop, for each class c,, the most specific (S-set)
description of that class. This permits very explicit handling of the tinobservcd
portions of the space. Figure Dla-5 shows such a set of descriptions.

When S and G sets are both available, the performance element can
choose among '•efinite classification (the instance is covered by the S set),
probable classification (the instance is covered by only one C set), and multiple
classiflcaLion (Lhe instance is covered by several G sets). AQI I has the ability
to calculate an approximate S set for each class. When the description of the
clas is disjunctive, the .3 set is also disjunctive.

Applications of AQiJ

"The AQ 11 program has been applied to the problem of discovering disease-
diagnosis rules for 15 soybean diseases (Michalski and Chilausky, 1980). Here
is an example or a classification rule for the disease R.1izoctonia root rot
obtained by the overlapping-concept approach discussed above:

leaves E {normal} A stem E {abnormal) A
stem cankers E {below soil line) A canker hlsion color E (brown) V

leaf malformation E {absent) A stem E (abnormal) A
stein cankers E (below so)il line) A canker lesion color E (brown)
SRhizoctonia root rot.

Instance Space

00

91 92C3 9

Figure D4a-5. Learning both the G and S set descriptions
for each class.
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An interesting experiment was conducted as part of the soybean disease
project. The goal was to compare the quality of rules obtained through
consul~tioa with expert plant pathologists with rules developed by learning
from examples. Descriptions of 630 diseased soybean plants were entered into
the computer (as feature vectors involving 55 features) alorg with an expert's
diagnosis of each plant. A special instince-selecLion program, ESEL, was used
to select 290 of the sample plant-s as training instances. ESEL attempts to
select training instances that are quite different from one another-instances
that are "far apart" in the instance space. The remaining 340 instances
were set aside to serve as a testing set for comparing the performance of the
machine-derived rules with the perfurmance of the expert-derived rules.

AQII was then run on the 290 training instances to develop overlapping
rules such as the rule ahove. Simultaneously, the rescarch.s consulted with
the plant pathologist to obtain a set of rules. They adopted the standard
knowledge-engineering approach of interviewing the expert and translating
his expertise into diagtiosis rules. The erpert insisted on using a description
language that was somewhat more expressive than the language used by AQI 1.
The expert's rules, for examnple, listed some features as necessary w.d other
features as confirmatory; AQII was unable to make such a distinction.

As a consequence of the differing description languages, slightly differing
performance elements had to be developed to apply the two sets of rules, and
each performance element was adjusted to get the best performance from its
classification rules. Surprisingly, the computer-generated rules outperformed
the expert-derived rules. Despite the fact that the expert-derived rules were
expressed iu a more powerful language, the machine-generated rules gave the
correct disease top ranking 97.6% of the time, compared to only 71.8% for the
expert-derived rules. Overall, the machine-generated rules listed the correct
disease among the possible diagnoses 100% of the time. in contrast to 96.9%
for the expert's rules. Furthermore, the computer-derived riles tended to
list fewer alternative diagnoses. The conclusion ot the experiment was that
automatic rule induction can, in some situations, lead to more reliable and
more precise diagnosis rules than those obtained by consultation with the
expert.

References

Michalski and Larson (1978) describe the AQII and ESEL progrnims in
detail. The soybean work is described in Michalski and Chilausky (1980).
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D4b. Meta-DENDRAL

META-DENDRAL (Buchanan and Mitchell, 1978) is a program that discovers
rules describing the operation of a chemical instrument called a mas. spec-
trometer. The mass spectrometer is a device that bombards small chemical
saniplis with accelerated electrons, causing the molecules or the sample to
break apart into many charged fragments. The masses of these fragments can
then be measured to produce a mass spectrum-a histogram of the number
of fragments (also called the intenutyL) plotted against their mass-to-charge
ratio (see Fig. D4b-I).

An analytic chemist tan infer the molecular structure of the sample
chemical through careful inspection of the mass spectrum. The Ileuristic
DENDIRAL program (see Sec. vii.C2, in Vol. II) is able to perform this task
automatically. It is supplied with the chcnmical formula (but not the structure)
of the sample and its mass spectrum. Ileuristic i)ENDRAL first examines the
spectrum to obtain a set or constraints. These constraints are then supplied
to CONCEN, a program that can generate all possible chemical structures
satisfying the constri.ints. Finally, each or these generated structures is tested
by running it through a mans-spectrometer simulator. The simulator applies
a set of cleavage runes to predict which bonds in the proposed structure will
be broken. The result is a simulated mass spectrum for each candidate
structure. The simulated spectra are compared with the actual spectrum, and
the structure whose simulated spectrum best matches the actual spectrum is
ranked as the most likely structure for the unknown sample.

Intensity

\laI'-.'•I o-' h~targa, rattio

Figure Dlb-l. A mass spectrum.

428
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The Learning Problem

Meta- DEND RAL was dcsigncd to serve as the learning element for lieu-
ristic DENDRAL. (For an alternate view of %leta-DELNDRAL as an expert
systemn, see Articlc VII.C2c, in Vol. 11.) Its ptirrome is to discover new cleavage
rules for DENDRAL's mass-spectrometer siriulator. These rules are groouped
according to structurni famsihea. Chcmni- _.j have noted that molecules that
share the same structural skeletoii behave in 3imilar ways inside the mass
spectrometer. Conversely, molecules with vastly different structures behave
in vastly different ways. Thus, no single set of cleavage rules Can1 accuratelY
describe tbe behavior of all molecules in the mass spectrometer.

Figure D-lb-2 shows an examiple of a structural skeleton for the family
of nionoketoandrostanes. Particular molecules in this family are constructed
by attaching keto groups (011) to any of the available carbon atoms in the
skeleton.

The learning problem addressed hy Meta-DENI)RAL is to discover the
cleavage rules for a particular structural family. The problem can be stated
as follows:

Given: (a) A representation language for describing molecular structures
and substructures; and

(b) A training set or known molecules, chiosen from a single struc-
tural famnily, along with .heir structures and their mass spec-
tra;

Find: A set or cleavage rules that characterize the hchavior or this struc-
tural family in the ma~ss spectrometer.

This learning problem is diffiult becaus9e it contains two sources of ambiguity.
First, the mass spectra of the training molecules are noise-ridden. There may
be falsely observed fragments (false positives) and important fragnients that
may not have been observed (fal.se negatives). Second, the cleavage rules need

Figure D-lb-2. The structural skeletoni for the monoketo-
androstane family.
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not be entirely consistent with the training instances. A rule that cQrrectly
predic, A cleavage in more than halt of the molecules can be considered to
be acceptable; the rules need not be cautious. It is safer-froin the poiat of
view of DE.NDRAL's simulation task-to predict cleavages that do not occur
than it i,. to fail to predict cleavages that do occur.

Meta-DENDIRL's representation language corresponds to the ball-and-
stick models used by chemists. The molecule is rept-esented as an undirected
graph in which nodes denote atoms aud ed.,,es denote chemiral bonds. Ilydro-
gen atoms are not included in the graph. Each atom can have four features:
(a) the atom type (e.g., carbon, nitrogen), (b) the number of nonhydrogen
neighbors, (c) the number of hydrogen atoms that are bonded to the atom, and
(d) the niumber of double bonds in which the atom participates. A cleavage
rule i- expressed in terms of at bond environment-a portion of the molecular
structure surrounding a particular bond. The bond environment makes up
the condition part of a cleavage rule. The action part of the rule specilies
that the designated bond will cleave in the mass spectrometer. Figure Dlb-3
shows a typical cleavage rule.

The performance element (the simulator) applies the production rule by
matching the left-hand-side bond environment to the molecular structure that
is undergoing simulated bombardment. Whenever the left-hand-side pattern
is matched, the right-hand-side predicts that the bond designated by * will
break.

The Interpretation Problem and the Subprogram INTSUM

Meta-DENDRAL employs the method of model-driven generate-and-test
to search the rule space of possible cleavage rules. Before it can carry out
this search, however, it must first interpret the training instances and convert
them into very specific points in the rule space (i.e., into very specific cleavage
rules).

2-V-Z-tU X -Y 0 Z-W

Node Atom type Neighbors •l-neighbors Double bonds

z carbon 3 1 0
Y carbon 2 2 0
z nitrogen 2 1 0
W carbon 2 2 0

Figure D4b-3. A typical cleavage rule.
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The interpretation process is accondplished by the subprogram INTSUM
(INTerpretation and SUMmary). Recall that the training instances have the
form:

(whole molecular structure) (masm spectrum).

INTSUM seeks to develop a met of very specific cleavage rules of the form:

(whole molecular structure) -, (one designated broken bond).

To make this conversion, INTSUM must hypothesize which bonds were
broken to produce which peaks in the spectrum. It accomplishes this by means
of a "dumb" version of the DENDRAL mass-spectrometer simulator. Since
Meta-DENDRAL is attempting to discover cleavage rules for this particular
structural class, it cannot use those same cleavage rules to drive the simula-
tion. Instead, a simple haLf-order theory of mass spectrometry is adopted.

The half-order theory describes the action of the mass spectrometer as
a sequence of complete fragmentations of the molecule. One fragmentation
slices the molecule into two pieces. A subsequent fragmentation may further
split one of those two pieces to create two smaller pieces, and so on. After
each fragmentation, some atoms from one piece of the molecule may migrate
to the other piece (or be lost altogether). The half-order theory places certain
constraints on this split-and-migrate process. It says that all bonds will break
in the molecule except the following:

I. Double and triple bonds do not break;

2. Bonds in aromatic rings do not break;

3. Two bonds involving the same atom do not break simultaneously;,
4. No more than three bonds break simultaneously;

5. At most, only two fragmentations occur (one after the other);
6. No more than two rings can be split as the result of both of the frag-

mentations.

Constraints are also placed on the kinds of migrations that can occur:

1. No more than two hydrogen atoms migrate after a fragmentation;

2. At most, one H2O is lost;

3. At most, one CO is lost.

The parameters of the theory are flexible and can be adjusted by the user of
Meta-DENDRAL.

Based on this theory, INTSUM simulates the bombarding and cleaving of
the molecular structures provided in the training instances. The result is a
simulated spectrum in which acti simulated peak has an associa•ed record
of the bond cleavages that caused that peak to appear. Each simulated
peak is compared with the actual observed peaks. If their masses match,

:!a
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then INTSUM infers that the "cause" of the simulated peak is a plausible
explanation of the observed peak. If a simulated peak finds no matching
observed peak, it is ignored. If an observed peak remains unexplained, it is
also ignored. However, unexplained peaks are reported to the chemist. A large
proportion or unexplained peaks would indicate that the half-order theory was
inadequate to explain the operation of the mass spectrometer in this training
instance.

The half-order theory contributes another source of ambiguity to the
learning problem. The interpreted set of training instances can easily contain
erroneous instances. INTSUM's half-order theory tends to predict cleavages
that did not, in fact, occur. It is also not unusual for the half-order theory
to fail to predict cleavages that did occur. Thus, the training instances th:at
guide the rule space search are very noisy indeed.

The Search of the Rule Space

"Meta-DENDRAL searches the rule space in two phases. First, a model-
driven generate-and-test search is conducted by the RULIPCEN subprogram.
This is a fairly coarse search from which redundant and approximate rules
may result. Thc second phase of the search is conducted by the RULEMOD

- subprogram, which cleans up the rules developed by RULEGEN to make them
more precise .rnd less redundant.

RULEGEN. This subprogram searches the rule space of bond environ-
"ments in order from most general to most. specific. The algorithm repeatedly
generates a new set of hypotheses, It, and tests it against the (positive) train-
ing instances developed by INTSUM, as follows:

Step 1. Initialize H to Contain the moat general bond enVironmenL

-I Node Atom type Neighbors 11-neighbors Double bonds
X any any any any

V any any any any
This bond environment matches every bond in the molecule and
thus predicts that every bond will break. Since the most useful
(i.e., most accurate) bond environment lies somewhere between this
overly general environment (z * y) and the overly specific, complete
molecular structure (with specilied bonds breaking), the program
generates refined environments by successively specialiving the i[
set.

Step 2. Generate a new, set of hypotheses. Specialize the *!t It by making
a change to all atoms at a specified distance (radius) from the
* bond-the bond designated to break. The change can involve
either adding new neighbor atoms or specifying an atom feature.
All possible specializations are made for which there is supporting

*11
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evidence. The technique of modifying al! atoms at a particular
radius causes the RULEGEN search to be coarse.

Step 3. Test the Ap•o•see against the trainint iutances. The bond environ-
mentms in H are examined to determine how much evidence there
is for each environment. An improwment criteriao is computed for
each environment that states whether the environment is more
plausible than the parent environment from which it was obtained
by specialization. Environments that are determined to be more
plausible than their pArents are retained. The others are pruned
from the H set. If all specializations of a parent environment ar
determined to be less plausible than their parent., the parent is
output as a new cleavage rule and is removed from H.

Repeat steps 2 and 3 until H is empty.

Figure D4b-4 shows a portion of the RULECI"N search tree. zorizontal
levels in the tree correspond to the contents of the IH set after each litera-
tion. Starting with the root pattern, So, the nwamber-of-neighbora attribute
is specialized (i.e., the pattern graph is expanded) for each atom at distance
zero from (adjacent to) the break to give pattern SI. The atom type is then
specified for atoms adjacent to the break in S2 and for atoms one bond
removed from the break in S3 . At each step, there are many other poe-
sible successors corresponding to assignments of other values to these same
attributes or to other aitributes.

The improvement criterion used in step 3 states that a daughter environ-
ment graph is more plausibie than its parent graph if:

1. It predicts fewer fragmentations per molecule (i.e., it is more specific);

X.X (S.)

X - x .X - X (SO)

(s,) X -c .c -x

N-C *C- C (S)

Figure D4b-4. A portion of the RULEGEN search tree.
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2. It still predicts fragmentations for A least half of all of the molecules
(i.e., it is sufficiently general);

3. It predicts fragmentations for as many molecules as its parent-unleis
the parent graph was "too general" in the sense that the parent predicts
more than 2 framentations in some single molecule or on the average
it predicts more than 1.5 fragmentations per molecule.

This algorithm ansaimes that the improvement criterion increases mono-

tonically to a single maximum value (i.e., it is unimodal). This is usually true
for the mass-spectrometry learning task. RULEGEN can thus be viewed as
following monotonically. ncreasing paths down through the partial order of
the rule space until the criterion attains a local maximum value.

RULEMOD. The rule, produced by RULEEN are very approximate and
have not been tested against negative evidence. RULEMOD improves these
rules by conducting fine hill-climbing searches in the portions of the rule space
near tlhe rules located by RULEGEN. rhe subprogram RULEMOD proceeds
in four steps:

Step 1. Select a subset of important rules. RULEGEN can produce rules that
are different from oine another but that explain many of the same
data points. RULEMOD attempts to find a small set or rules that
account for all of the data. Negative evidence is gathered for
each rule by re-invoking the mass-spectrometer simulator. Each
candidate mile is tested to see how many incorrect predictions are
made as well as how many correct predictions. The rules are ranked
according to a scoring function (I X (P + U - 2N), where I is the
average intensity of the positively predicted peaks, 1P is the number
of correctly predicted peaks, U is the number of correct peaks
predicted uniquely by this rule and no other, and N is the number
of incorrectly predicted peaks). The top-ranked rule is selected.
All evidence peaks explained by that rule are removed, and the
ranking and selection process is repeated until all positive evidence
is explained or until the scores fall below a specified threshold.

Step 2. Specialize ru..j to exclude negative evidence. RULFMOD attempts to
specialise the rules in order to exclude some negative evidence while
retaining the positive evidence. For each candidate rule, RULIMOD
attempts to fill in additional values for features that were left
unspecified by RULEGEN. RUI.[EMOD first examines all of the
positive instances predicted by the candidate rule and obtains a list
of all possible feature values that are common to all of the positive
instances. Each of these feature values could inddividually be added
to the rule without excluding any positive instances. RULEMOfl
attempts to select a mutually compatible set of values that will
exclude a large amount of negative evidence.
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The selection process uses a hill-climbing search. The reature value
that excludes the largest number of negative instances is chosen
and added to the candidate rule. Incompatible feature values are
pruned from the list of possible refinements, and the process is
repeated until further refinement is not possible or all negative
evidence has been excluded.

Step 3. Gentralize rules to include positive eidence. RULEMOD attempts
to generalise the rules in order to include some positive evidence
without including any new negative evidence. This is accomplished
by relaxing the legal values for atom features that were specified by
RULECEN. RULEMOD examines each atom in the bond environ-
ment of the rule, starting with the atoms most distant rrom the *
bond. It first checks to see it the whole atom can be rermoved from
the graph without introducing any negative evidence. Ir it cannot,
then a hill-climbing search is performed that iteratively removes
the one atom feature that allows the rule to include the largest
amount of new positive evidence without introducing any negative
evidence. When the outermost atoms have been generalised as
much as possible, RULEGEN examines the set of atoms that are
one bond closer to the fragmentation site. This search continues
until all possible changes have been made.

Step 4. Select the final euhlet ol rides. The procedure used in step I is re-
applied to select the final set of rules.

The key assumption made by RULEMOD is that RULEGEN has located rules
that are approximately correct. RULEGEN points out the regions of the rule
space in which detailed searches are needed.

Notice that RULEMOD must frequently invoke the mass-spectrometer
simulator to assess the negative (incorrect) predictions of a proposed rule.
INTSUM provides only positive training instances to RULECHN. Negative
instances are not provided to IRULECEN directly because there are many
more negative insL.%nces than there are positive instances. This is a problem
that frequently arises in systems that are attempting to explain why some
particular set of events took place. Negative information must indicate every-
thing that did not occur.

All three of Meta-DENDRAL's subprograms make use or some form or
the mass-spectrometer simulator. These versions of the simulator are flexible
and transparent. They allow the learning element to interpret the training
instances and to reason about the performance of a hypothetical modification
to the cleavage rules. Similar transparent performance elements are used in
systems that learn to perform multiple-step tasks (see Sec. XIV.D5).

Experiment planning and the search or the instance space. Meta.
DENDIRAL does not conduct a search of the instance space. Such a search
would require that Meta-DENDRAL select a molecular structure and ask
the chemists to synthesise it and obtain its mass spectrum. To choose an
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appropriate molecule, Meta-DENDRAL would need to invert the INTSUM
process. Given a set of possible bond cleavages that it w.nted to verity, Mcta-
DENDRAI, would need to determine a molecule in which those bonds would
cleave. Once the molecule was chosen, existing organic-synthesis programs
could be used to plan the synthesis process (see Article vi.C4, in Vol. ii). The
chosen molecule might be difficult or impossible to synthesize. Instance-4pace
searching was not incorporated into Meta-DENDRAL because of the complex
and time-consuming nature of these procedures.

Another View of the Meta-DFNDRAtL Learning Algorithm

In the previous section, we discussed the RU1.EGCEN/RUJLEMOD pair of
subprograms as a coarse search followed by a fine search. Another view of
this process is that RlJ.EGCEN converts a multiple-concept learning problem
into a set of single-concept learning problems. This view regards the output

* of RUIECEN not as a set of rules but as a clustering of the training instances.
* Once RULGCEN has completed its search, the program knows approximately

which training instances belong together as instances of a single cleavage rule.
At this point, a ringie-concept learning algorithm could be applied to discover
this rule directly from the RULECEN-supplied cluster of training instances
rather than by incremental modifications of the RULEGEN-supplied rule.

As part of his thesis work, Mitchell (1978) applied the candidate-
elimination algorithm to this learning problem. Each approximate rule devel-
oped by RULECEN wan used to build a set of positive and negative training
instances that were then processed by the version-space approach. This
technique resulted in a better set of cleavage rules than those developed
with RULEMOD. The version-space approach has the advantage of support-
ing incremental learning, so Mitchell's system can incorporate new training
instances as they become available.

Strengths and Weaknesses of the Meta-DENDPItL System

Meta-DENDRAL is an effective learning system applied to a real-world
domain. Meta-DENDRAL han discovered cleavage rules fo. five structural
families of molecules. The system provides solutions to the problem of inter-
preting training instances and to the problem of !earning in the presence of
certain kinds of noise. These solutions are based on the incorporation into
the program of a large a:mount of domain-specific knowledge. This knowledge
enters the system in the form of the half-order theory of mass speceromCtry
(to gufide interpretation) and in the use of a model-directed search of rule
space.

The two-phase search of the rule space provides an efficient method for
searching a large space and also suggests how a multiple-concept learning
problem can he converted into a set of single-concept learning problems.
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Among the weaknesses of the system'are its domain-specific representation
and the fact that much of the domain knowledge is buried in the code rather
than represented as an explicit knowledge bas.

•-- Lindsay, Buchanan, Feigenbaum, and Lederberg (1980) present a comn-
prehenaive survey of the many programs developed during the DENDRAL
project. Buchanan and Mitchell (1978) describe Meta-DENDRAL as an Al
learning system. Mitchell (1978) discusses the application of the candidate-
elimination algorithm to Meta-DENDRAL.

it
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D4c. AM

AM is a computer program written by Douglas Lenat (1976) that discovers
concepts in elementary mathematics and set theory. Unlike most of the
learning systems described in this chapter, AM does not learn concepts for
use in some performance task. Instead, it seeks simply to define and evaluate

interesting concepts on the basis of a knowledge of mathematical aesthetics.
It employs a refinement-operator approach (see Article XIV.DI) to conduct a
h i,-hstic search of a space of mathematical concepts.

AAA starts with a substantial knowledge base of 115 concepts selected from
finite set theory. As AM runs, it collects examples of these concept-, creates
new concepts, and hypothesizes conjectures r,.latinK the concepts to each
other. During one typical run of a few CPU hours' duration, AM defined about
200 new concepts, hair of which were quite well known in mathematics. One
of the synthesized concepts was equivalent to the concept of natural numbers.
AM's knowledge of mathematical aesthetics led it to pursue this concept in

depth, and it spent much time developing elementary number theory, includ-
ing conjecturing the fundamental theorem of arithmetic (i.e., every number
has a unique prime factorization). This impressive performance can be traced
to AM's large body of knowledge about mathematics and its ability to apply
this knowledge to discover new concepts and conjectures.

In this article, we first describe AM's architecture in terms of its repre-
sentation for concepts and its control structure for deciding what tasks to
perform. Then we change our perspective and show how AM can be viewed as
searching an instance space and a concept space by the refinement-operator
method. Third, we examine the initial contents of AM's knowledge base and
review brielly the concepts that it discovered. Finally, we attempt to sum-
marize the strengths and weaknesses of tA's approach tj concept discovery.

AM's Archiitecture

AM is a blend of three powerful methods: frame representr ,ion, production
systems, and heuristically guided best-first search. We discuss each of these
in turn.

Frame representation•. The concepts that AM discovers and manipu-
lates are represented as frames (see Article 1I.C7, in Vol. 1), each containing
the same fixed set of slots. Each concept has slots for its definition, for known
positive and negative ezamples, far links to other concepts that are specializa-
tions and generalizations of the concept, for telling the worth of the concept,
and for several other things. Figure Dlc-l shows the rrame representation of
the PRIMES concept after it has been discovered and filled in by AM.

438
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NAME: Prime Numbers

DEFINITIONS:

O0IGIN: Nunbor-of-divisors-of(z) a 2

PREDICATE-CALCULUS: Prime(x) W (Nz)(z I z 2 1 a z x)

ITERATIVE: (for z ' 0): For I from 2 to sqrt(x). -( I )

EXAMPLES: 2. 3. 5. ;. 11, 13. 17

BOUNDART: 2, 3

BOUNDAIY-FAILURES: 0, 1

FAILUEE: 12

GENERALIZATION$: Mos.. Nos. vith an even no. of divisors.
Nos. with a prime no. of divisors

SPECIALIZATIONS: Odd Primes. Prime Pairs. Prime Uniquely-addables

CONJECTURES: Unique fpctorization. Coldbach's conjecture.
Extremes of Number-of-divisors-of

ANALOGIES:
Maximally divisible narbors are converse extromes of
Number-of -divisors-of,
Factor a nonsimple group into simple groups

INTEREST: Conjectures associating Prw.mes with TINES
and with Divisors-of

WORTH: 800

Figure D4c-I. AM's rrame representation or the PRIMES concept.

The DEFINITIONS slot is the most important. It provides one or more LISP
predicates that can be applied to determine whether something is an example
of the concept. AM knows a concept when it has a definition for it. flow-v:,
the frame representation allows AM to represent more knowledge about a
concept than just its definition. The CONJECTURES, SPECIALIZATIONS, and

GtNERALIZATIONS slots, for cxample, all describe different ways in which
concepts arc! related to each oth'er. Furthermore, attached to each s!ot in a
concept are heuriasic rules (10L6 shown in the figure) that can be executed to
fill in the contents of a slot or to check the contents to see if they are correct.
These heuristic rules form a production systtem that carries out the actual
discovery process.
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Production systems. AM operat-'s as a modified production system.
Each of the 242 heuristic rules attached to the concept slots of AM's knowledge
base is written, as in all production systems, as a condition part and an
action part. The condition part 4ells under what conditions the rule should
be executed, and the action part carries out some task such as creating a new
concept or finding examples of an existing concept. For instance, the following

- heuristic rule is attached to the EXAMPLES slot of the AMN' -CONCEPT frame:

In: The current task is 'Fill in examples of X"
and X is a specialization of some concept Y,

Then: Apply the definition of X to each of the examples of Y
and retain those that satisfy the de'inition.

The main dilference L-etween AM's production-system architecture and
the standard recognize-act cycle is the way rules are selected for execution.
Recall that in an ordinary production system, the condition part of each
rule is compared to the contents of a working memory, and all rules that
match are executed. In contrast, AM is much more selective about which
rules it executes. It operates from an agenda of tasks of the form "Fill in (or
"check) slot S of concept C." Each task has a numeric "interestingne-A" rating.
A.M repeatedly selects the most interesting task front the agenda, gathers all
heuristic rules relevant to performing that task, and executes thobe rules that
are •etually applicable.

To locate those heuristics that are relevant to the task "Fill in (or check)
Mlot .S of concept C," AM looks at slot S of concept C to see if it has any

"- �'-�-ached heuristics. If it does, those heuristics are executed. if not, AM
examines relatives of concept C to see if any of them have heuristics that can
be inherited by C and applied. For example, when AM is looking for rules
relevant to the task "Fill in examples of sets," it linds no heuristics attached
to the EXAMPLES slot of SETS. Coisequently, it looks at concepts such as
ANYCONCEPT, which are more general than SETS. The EXAMPLES slot of

.. ANYCONCEPT has an attached heuristic that-says: -

If. The current task is "Fill in examples of X"
and X has a recursive definition,

Then: Instantiate the base step of the recursion to get
a boundary example.

When AM applies this heuristic rule, it creates the null set as a boundary
EAMI',tIx of SETS. Heuristics that are closely related to C are executed before
heuristics of distant relatives.

A heuristic rule can do one or more of the following:

1. Fill in slot S of some concept C. This covers many activities, including
finding ncw examples for a concept, proposing conjectures, and providing
guidance for the search by modifying the WORTH slot of a concept.

7!7
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2. Check slot S of concept C. The process of checking a slot involva verifying
that the conte~nts of the slot are correct and noticing interesting facts
about a VILo. Often, a rule will check a slot and notice that some new
taak should be performed as a result. For example, one tule notices that
all of the examples of one concept, X, ate also examples of a more specifc
concept, Y. It conjectures that X and Y are equivalent and proposes
the task "Check examples of Y'" to see if Y is actually equivalent to an
even more specific concept, Z.

3. Create new concepts. Ncw concepts are created by adding a new framae
to the knowledge base and filling in the DKFINITIONS slot of the frame.
Usually the WORTH slot is filled in as well.

4. Add new Wsks to (te agenda. Often, a rule will propose that a new task
be addedi to the age-nda. For example, irule that creates a new cencet,
X, will propose the new task 'Fill in examples of X." Most rules that
generate examples of X will propose the task "Check examples of X.*

5. Modify tAc interestingness of a task on tht agenda. The numerical interest.-
ingness of a task is computed from a list of 'reasons* for performing
the task. Thus, a rule can add a new reason to an existing tosk. This
is another way of providing giiidance in the search ror concepts and
conjectures.

Beat-first search. The procedure of always choosing the most interest-
ing task from the agenda gives AM the flavor of best-first search. This search is
well guided by heuristics that modify the INTL;RESTINGNI,'SS and WOfrri slots.
of concepts and that propose and justify agenda tasks. AM hias 59 heuristics
for assessing the intcrestingness, of concepts andi ta~sks. One rule, for example,
says that a concept is interesting if each of its examples accidcntaly satisfies
an otherwise rarely satisfied predicatc P. (The satisfaction is accidental if the
concept was not deliberately olelined as the s-t, of things satisfying P.)'

Without heuristic guidance and the agenda mechani~sm, AM would be
*swamped by a combinatorial explosion of new conicepts. Hlowever, thec tact
that it creates only 200 new concepts and that half of them are acceptable to:
a mathematician shows that its search is quite restrained. AM is an excellent
example of the power of well-informed best-first search.

AM and the Two-apace View ol Learning

IThus far, we have discussed the architecture of AM. We new turn our
attention to how this architcctuire is used to accomplish learning. Although
its 242 heuristic rules arc extremenly varied atid can perform many diverse
functions, AM tends to behave as if it were executing the followinK loop:

Repeta

Step 1. Select a concept to evaluate and generate examples of it.

V"
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Step 2. Check these examples looking for regularities. Based on the regu-
larities,

(al update the assessment of the inter"tingness of the concept,

(b) create new concepts, and

(c) create new conjectures.

Step 3. Propagate the knowledge gained (especially from new conjectures)
to other concepts in the system.

fit term.s of the tw(-,p.-ce view of learning, step I searches a space of instances,
step 2 .exanines these instances and s.warches the space of concepts (the rule
spare) mid conjectures, and step I performs bookkeeping to maintain the
conzsistency and integration of the knowledge base. We examine each of these

steps in more detail.
Searching the instance space. When a concept is created, AM knows

very little about that concept aside from its LISP definition. In fact, when
AM is first started tip. none of its 115 initial concept frames has any examples
filled in. 'htts, one of the lirst tasks it must perform-in order to assess the
value of the concepts mad develop conjectures-is to gather examples (and
negative examples) of its concepts. AM has more than: 31) heuristic rules to
guide this example-generating proce.s. Here are some of the techniques they
use:

1. Symbolic ins4mitiation of definitions. Symbolic instantiation converts tile
definition of a concept into an example. Tyuically, each concept has,
as one of it.s dcfinitions, a recursive LIS1' predicate. The base step of
this r,-cnrsion can be instantiated to give an instance that satisfies the
delinition. For example, one or the definitions of the SIET concept is:

(lambda (s)
(or (= a {})

(aset.de.finition (remove (any-member a) s))))

Since the first thing this definition checks is to see if s is the null set,
we can concl:u.e that the null set is an example of a set. Similarly, AM
knows that removing is the opposite of inserting, so it can deduce that
{{}} is also a set by inserting {} into itself.

2. Generate anid test. Another approach uised by the program is to generate
exampler uud test them against the concept definition. In order to
generate exanles of some concept C, the program looks at "nearby"
concepts w; the knowledge base. [,or example, AM may look at gencraliaz-
Lions if C (-oncept.s more gene.ral tL:mn C), operations that haw:? C in
their ra•ntg., 4-os11S of C (co1c1'lVtS Lth.at sl are a coenrion generalization

or specializxation with C), and ewven random It 1,1' ator.s front various
internal lists insile AM (such as the list of users of the system).

3. Inheritance of ezarnples. If concept C has other concepts that are more
specialized thart it. any example satisfying these more specialized concept
definitions will satisfy C. Examples can thus be inherited 'tup" the
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generalisation hierarchy. Similarly,'negative examples can be inherited
"down" the generalisation hierarchy.

4. Applyinq the a4erithm o the concept. So-called active concepts (i.e., opera-
tors such as SET-UNION) have algorithms that compute an element in
the range of the concept when given valid arguments from the domain.
Thus, by randomly selecting domain items and applying these algo-
rithms, AM can produce new examples. For instance, if {A} and (B)
are sets, then SET-UNION.ALGOKITIIMS produces (A, II, and the list
({A), {O}, {A, LD)) forms a posiive example or SET-UNION.

5. Reuonmi by views or by anaog. The VIEWS slot of a concept provides
.an algorithm ror converting instances of one concept into instances of
anotlher. The ANALOGY slot ,ives less precise inforrmation about how
instances or one concept are related to instances of another concept. AM
can use these two slot. to map existing examples into examples of the
concept under construction.

When AM needs to fill in examples of a concept, it attempts to apply these
methods until it has developed 26 exampits of the concept (or until it has
exhausted its time or space quota for the current task).

A particularly interesting feature or tm is its ability to locate the bound-
ary or a concept. Examples of a concept are classified according to whether
they are:

1. Normal positive examples,
2. Boundary positive examples,
3. Boundary negative examples (i.e., what Winston, 1070, calls near mises),

4. Normal negative examples, or
5. Just plain weird (i.e., have the wrong data structure).

Most examples produced by the above-mentioned techniques will turn out to
be normal positive examples (or normal negative examples, if they do not.
satisfy the concept delinition). Some of the example-generatLion techniques,
however, are faulty. They can accidentally generate negative examples. A
particular case is the VIEW slot of SETS that tells AM that it can view a bag
as a set by changing the [] brackets (that represent a bag) to ( ) t -es. This
does not always work (e.g., when the bag [a, b, a] is viewed as tha6 et {a, b, a)
which contaias an impernmissible duplicate clement). When AM checks these
examples agai.nst the definition of a set, it discovers that they rail. Such
negative examples are claasified as boundary negative examples.

Boundary positive examnples can be found by such techniques as instan-
tiating the ha:m! ca•e of a recursion (which almuost always produces a boundary
case) or by taking boundary non-examples of more specialized concepts and
determining that they satisfy the concept definition. Another technique is to
take a normal positive example and progressively modify it until it fails to
satisfy the definition. This isolates the boundary of the concept quite well.

( I
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By applying all of these techniques, AM is able to gather a good set
t" examples that can'be used for analysis and generalization. AM can also
assess how much effort was expended to obtain these examples. Thus, it can
conclude that a predicate is "rarely satislied" or "easily satisfied.* All of these
empirical data are used to drive the search of the rule space and the search
for interesting conjectures.

Searching the rule space. The rule space for AM is the space of
all possible instantiations of its concept frame. This is indeed an immense
space. To search it, AM applies a refinement-operator method similar to the
techniques employed by BACON and ID3 (see Article X1V.D3b). The current
set of concept frames can be thought of as AM's current set of hypotheses.
These hypotheses are repeatedly refined and extended by applying operators
(i.e., heuristics) that create new concepts and conjectures.

AM has roughly 40 heuristics that create new concepts. These can be
broken into two sets. One set of heuristics is general and can be applied to
virtually any concept in AM. The second set is applicable only to functions
and relations--active concepts that can he viewed as mapping elements from
some domain set into some range set. The general methods are:

1. Generalization. AM implements, in some form, virtually all rules of
generalization that have appeared in other Al programs. The dropping.
c.7ndition, addling-option, and turning-constants-to-variables rules are
all used. Also implemented is the technique of specializing a negative
conjunct (e.g., A A -B is generalized to A A -1B', where D' is more
specific than B). AM can generalize expressions involving quantification,
for example, converting 3z E S : P(x) to 3 x E 5' : P(z), where S'

S,,is a larger set than S. Since the definitions of concepts are typically
recursive LISP functions, AM contains many rules or generalization that
are applicable to recursion. Por instance, a definition can be generalized
by eliminating one of a conjoined pair of recursive calls or by disjoining
a new recursive call. In particular, AM knows that if one recursive call
involves CAR. (or CnR.), the other re,:ursive call should use CDR (or CAR,
respectively).

2. Speeialization. AM "ilso implements a wide variety of rules oa specializa-
tion. These are the reversals of the rules of generalization mentioned
above.

3. Handling ezceptions. When a concept has a lot of exceptions (negative
boundary examples), a new concept can be created whose instances
are these negative examples. Also, AM can create the concept whose
instances are those positive examples, but not boundary examples, of
"the original concept. This allows AM to represent the conjecture that
all prime numbers are odd-except the number 2.

4. Reasoning b6 analogy. If J is a conjecture and P' is an analogous conjec.
ture, then AM can create the concept {b' J'(b')} and also the concept



D4U AM 445

(b' I -"J'(b')}, that is, the set of objects for which X' is true and the set
of objects for which J' is false.

AM's concept-creation methods that apply to active concepts (mappings)
usually produce new active concepts. New concepts can be created by the

following:

1. Generalization. The domain and range of an existing conceot can be
expanded.

2. Specialization. The domain and range of an existing concept can be
contracted (restricted).

3. Inversion. The inverse of an existing relation can be created. AM can also
create interesting concepts such as the inverse image of an interesting
subset of the range and the inverse image of an interesting value in the
range.

4. Composition. Two functions F(z) and C(y) can be comoosed to obtain
"the new functions F(G(1 1 )) and G(Flz)).

5. Projection. An existing multiple-argument function F can be projected
onto a subset of its. arguments. For example, Proj2(F(z, y)) is just y.

6. Coalesce. The arguments of F(z, y) can be coalesced to produce a new
function, G(z) - F(z, x).

7. Canonization. This method takes two predicates, Pt and Ps, and
defines a function, F, and a set, the range of F, such that Pz, (x) V)
P 2 (F(z), F(y)). If z and y are instances of concept C, then F maps C to
the set of canonical C. Thus, P 2 applied to canonical C is '.he same as
P, applied to C. AM uses this operation to invent NUMIBERS by taking
SAME-SIZE(z,y) as P1 , and EQUAL(z, V) as P2 , and applying them to
bags to create the canonizing function SIZE -OF(z) and the concept of
CANONICAL-BAGS (i.e., bags Lhat contain only T). CANONICAL-BAGS
can be interpreted as numbers.

8. Prallel-replace and parailel-join. These concept-creation operators come
in many varieties and are used to create new concepts by repeated
application of old concepts. Multiplication, for example, can be created

- by repe'%ted addition (with the parallel-replace method).

0. Permutation. The arguments of a function or relation can be permuted
to give a new functien or relation.

l0. Cartesian product. A new concept can be obtained by taking the Cartesian
product of existing concepts.

Many of the refinement ooerators in this group (e.g., COALESCE, COMPOSI-
TION) are also concepts dcfined in AM. It is perhaps only in mathematics that
the means of study are also the objects of study.
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Representing and proposing conj3ectures. Roughly 30 of AM's rules
also propose conjectures based upon examination of the empirical data. Con-
jectures take one of the following forms:

1. C, is an example of Cl;

2. Ct is a specialization (generaliation) of C,;

3. C, is equivalent to C2;
S..4. C1 is related by X to C2 (where X is some predicate);

5. Operation C, has domain D or range R.

Most of these conjectures are discovered by performing rough statistical
"comparisons of examples. If all of the examples of Ct are also examples of
C,, then AM conjectures that C, is a specialisation of C2. If AM is unable
"to find negative examples of C1, it conjectures that C, is trivially true. If
all examples of elements in the range of C, seem to be numbers, then AM

... - conjectures that Ci has numbers as its range. If all of the range elements of
C, are eqtial to corresponding domain elements, then perhaps C, is the same
as the identity function.

Conjectures, once proposed, are believed completely by AM. The relevant
slots are changed, and the changes are propagated throughout the knowledge
base. If two concepts are conjectured to be equivalent, they are merged and
the space occupied by one is releasd. AM can also modify the LISP definitions
to take advantage of new conjectures.

Propagating acquired knowledge. Several heuristics (including those
that locate and generate exam pies) serve to propagate new information through-
out the network of frames that constitutes AM's knowledge base. These are
fairly straightrorward and make heavy use of the three sets of inheritance
links (|S-AN-EXAMPLE-OF/EXAMPLES, SPECIALIZATIONS/GENERALIZATIONS,
DOMAIN/RANGE).

To complete our review of AM from the perspective of the two-space
"view of learning, we note that, although the example-generation tech-
niques discussed above perform sophisticated instance selection, there is no
corresponding need for complex interpretation routines like those found in
Meta-DENDRAL. On the contrary, since mathematical objects are easily rep-
resented and maninulated in LISP, there is no need to convert them to ?ome
alternate representation. More sophisticated instance selection and inter-
pretation routines would probabiy be needed for nonmathematical domains.

AM's Initial Knowledge Base

We now turn our attention to AM's actual performance. First wc describe
the knowledge that it started with, and then we give a summary of the
concepts and conjectures it found.

*1-

I



D4c AM 447

AM's initial knowledge base contains the basic conc.,,t hierarchy shown
in Figure D4c-2. In addition, beneath the concept of STRUCTURE are many
important data structures: SETS, ORDE•RED SETS, BAGS, LISTS (i.e., ordered
BAGS), and ORDERED PAIRS. Under the ACTIVITY concept a-.. many opera-
tionS such as SET-INTERSECT, SET-UNION, SET-DIFFERENCE, and SET-
DELETION (and analogous operations for BAGS, ORDERED SET?, and LISTS).
Also, several of the concept-creation operators such as PARALLEL-JOIN,
RESTRICT, PROJECTION, and so forth, are included here. Under PREDICATES
are the constant predicates TRUE and FALSE, as well as the concept of EQUAL-
ITY. Finally, the most important part of the initial knowledge base is the body
of 242 heuristic rules attached to various concepts in this tree. Most of these
were summarized above.

"Results: AM as a Mathematician

Now we review the mathematics that AM explored. Throughout, AM
acted alone, with a human user watching it and occasionally renaming some
concepts for his (or her) own benefit. Like a contemporary historian sum-

marizing the work of the Babylonian mathematicians, we will use present-day
terms to describe AM's concepts, and we will criticize its behavior in light of
our current knowledge of mathematics.

ANYTHING

ANYCONCEPT NONCONCEPT

ACTIVITY OBJECT

OPERATION PREDICATE RELATION ATOM CONJECTURE STRUCTURE

Figure D4c-2. AM's initial concept tree (partially shown).
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AM began its investigations with scanty knowledge of a few set-theoretic
concepts. Most of the obvious set.theoretical relations (e.g., de Morgan's
laws) were eventually uncovered; since AM never fully understood abstract
algebra, the statement and verification of each of these was quite nbscure. AM
never derived a formal notion of infinity, but it naively established conjectures
like "A set can never be a. member or itself" and procedures for making
chains of new sets ("Insert a set into itself"). No sophisticated set theory
(e.g., diagonalization) was ever done.

After this initial period of exploration, AM decided that "equality" was
worth generalizing and thereby discovered the relation "same size as." Natural
numbers were based on this discovery, and, soon after, most simple arithmetic
operations were defined.

Since addition arose as an analogue to union, and multiplication as a
repeated substitution, it came as quite a surprise when AM noticed that they
were related (namely, N + N = 2 X N). AM later rediscovered multiplication
in three other ways: as repeated addition, as the numeric analogue of the
Cartesian product of sets, and using the cardinality of the power set of the
union ol two sets.

Raising to fourth-powers and taking fourth-roots were discovered at this
time. Perfect squares and perfect fourth-powers were isolated. Many other
numeric operations and kinds of numbers were found to be of interest: odds,
"evens, doubling, halving, integer square root, and so on. Although it isolated
the set of numbers that had no square roots, AM was never close to discovering
"rationals, let alone irrationals. No notion of "closure" was provided to-or
discovered by-AM.

The associativity and commutativity of multiplication indicated to AM
that it could accept a bag of numbers as its argument. When AM defined
the inverse operation corresponding to "times," this property allowed the
definition to be: "any bag of numbers greater than I whose product is z." This
was just the notion of factoring a number z. Minimally factorable numbers
turned out to be what we call primes. (Maximally factorable numbers were
also thought to be interesting.)

Prime pairs were discovered in a bizarre way: by restricting the domain
and range of addition to primes (i.e., solutions of p + q = r in primes).

AM conjectured the fundamental theorem of arithmetic (unique factoriza-
tion into primes) and Goldbach's conjecture (every even number greater than

2 is the sum of two primes) in a surprisingly symmetric way. The unary
representation of numbers gave way to a representation as a bag of primes
(bhased on unique rartorization), but AM never came up with exponential nota-
tion. Since the key concepts of remainder, greater than, greatesL common
denominator, and exponentiation were never mastered, progress in number
theory was arrested.

When a new base of geometric concepts was added, AM began finding
some more general associations. In place of the strict definitions for the
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equality of lines, angles, and triangles c~me new definitions of concepts com-
parable to parallel, equal measure, similar, congruent, translation, and rota-
tion, together with many that have no common name (e.g., the relationship
of two triangles sharing a common angle). A clever geometric interpreta-
tion of Goldbach's conjecture was found: Given all angles of a prime num-
ber of degrees (08, 1*, 2, 3", 5,7, 1 V, ... , 1790), any angle between 0 and
180 degrees can be approximated (to within V°) as the sum of two of those
angles. Lacking a geometry "model" (an analogical representation like the
one Gelernter, 1963, employed; s3e Article II.D3, in Vol. i), AM was doomed to
propose many implausible geometric conjectures (see Article 1iI.C5, in Vol. [).

Perhaps a full appreciation for the depth of AM's search of the concept
space can be gained by examining Figure D4c-3, which shows the derivation
path for prime numbers. It is eight level4 deep and requires 14 concept-
creation operations. This derivation is q1uite impressive, both because of its
depth, and because the final concept is so far removed semantically from
the initial concepts. Note, in particular, the fascinating way in which a new
concept, SELF-COMPOSE, is used as a new operator to derive TIMES2= and
TIMES22. AM is able to search in a highly directed, rational fashion.

Evaluating AM

It is important to ask how general the AM program is: Is the knowledge
base "just right" (i.e., finely tuned to elicit this one chain of behaviors)?
The auswer is no: The whole point of this project was to show that a rela-
tively small set of general heuristics can guide a nontrivial discovery process.
Keeping the program general and not finely tuned was a key objective. Each
activity or task was proposed by some heuristic rule (like "Look for extreme
cases of X") that was used time and time again, in many situations. It was
not considered fair to insert heuristics that provide guidance in only a single
situation. For example, the same heuristics that lead AM to decompose num-
bers (using TIMES-inverse) and thereby discover unique factorization, also lead
to decomposing numbers (using ADD-inverse) and the discovery of Goldbach's
conjecture.

AM does, however, have some weaknesses. Although AM was able to
discover and refine many interesting new concepts, it had no way of improving
its stock of heuristic rules. Consequently, as AM ran longer and longer, the
concepts it defined were further and further from the primitives it began
with, and the efficacy of its fixed set of heuristics gradually declined. Lenat
(1980) has proposed a solution to this problem. lie advo-ates turning each
heuristic rule into a coi'evpt and developing additional operators for creating
new heuristics. The EURISKO project is presently pursuting this research.

A deeper problem has to do with some of the characteristics of the domain
of mathematics that may not hold in other domains. One important fact
about elementary mathematics is that the density of interesting concepts
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is quite high. AM relics on the ability to build up complex concepts from
more primitive concepts in a step-by-step fashion. At each step, the partial
concepts must appear to AM to be interesting. In many domains, however,
it is not possible to a.ssess the interestingness of partial solutions. Con-ider,
for example, the problem of credit assignment in a game such as chess. For a
novice chess player, it is necessary to play an entire game before receiving any
feedback on the quality of individual moves. Even as a player becomes expert,
it is still necessary to searcn several moves in advance in order to evaluate a
particular choice. Future efforts to develop AM-style discovery systems in
other domains may face difficulties in evaluating the worth of concepts. More
sophisticated interestingness heuristics may need to be developed. Work on
the EURISKO project may provide some answers to these questions.

Conclusion

AM is a powerful C'iscovery system that investigates and refines concepts
in elementary set and nrmber theory. It begins with a large body of knowledge
about what kinds of concepts are mathematically interesting and how they
can be synthesised from exiiting concepts. This knowledge can then carry
AM far beyond its initial store of concepts to discover prime numbers and the
fundamental theorem of arithmetic.

References
Lenat (107T) provides complete details on AM; see also Lenat (1977).

Lenat (1980) describes the EURISKO project.
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D5. Learning to Perform Multiple-step Tasks

"MOST of the learning programs discussed so far in this chapter were designed
to learn how to perform single-step tasks-that is, tasks in which one rule, or a
set of independent rules, can be applied in one step to accomplish the perfor-
mance task. In pattern claarification (Article XIV.D2) and single-c.oncept learn-
ing (Sec. XIV.D3), the performance element takes an unknown object or pattern
and assigns it to one of two classes (e.g., an arch or a "nonarch"). These sys-
tems apply a single clawsilication rule, or concept, to perform the classification.
Even the sequence-extrapolation problems addressed by BACON (Article
XIV.D3b) and SPARC (Article XIV.D3d) involve applying a single rule to predict
the next item in the sequence from the previous items. Similarly, in the
multiple-rule ta.4ks of soyb-.an-discame diagnosis (Article XIV.D4a) and maws-
spectrometry simulation (Article XIV.D4b), several rules are applied in parallel
to determine the unknown disease or to predict how the unknown molecule
/viil break apart.

Multiple-step Tasks

In contrast, this section surveys a few leorning systems that learn how
to perform multiple-step tasks-that is, tasks in which several rules must !,e
chained together into a sequence. Examples of multiple-step tasks include
the game of checkers, in which rules for making individual moves must be
chained together to play a whole game, and symbolic ifitegration, in which
several rules of integration must be applied sequentially to solve each integral.
The goal of the learning system is to acquire a good set of rules for performing
these tasks.
,uitipl-tep tasks are cssentially planning tasks in which the perfor-
mance element Must find a sequence of operators to get from some startinlg
state (e.g., the opening position in checkers) to some goal state (e.g., a won
gamne). The chapters on search (Chap. 11, in Vol. I) and planning (Chap. xv)
"describe various methods that have been used to accomplish this state-space
search (see Article HJC3, in Vol. i). So far, Al learning systems have been devel-
oped only for simple, forward-chaining planning programs. No attempts have
been made to learn how to perform hierarchical or constraint-bascd planning.

Viewing the Performance E'lement as a Production System

The first four systems described in this section-Samuel's (1959) checkers
player, Waterman's (1970) poker player, Sussman's (1975) IHACKE.R planning
system, and Mitchell's LEX system for symbolic integration (Mitchell, Utgolt,
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and Banerj';, in press)-are all simple, forward-chaining problem solvers and,
thus, can be viewed ab simple production systems. The grammatical-inference
systems discussed in the fifth article (Article XIV.D5e) employ context-free
grammars, which can also be considered production systems. The knowledge
base for each of these systems contains a set of production rules of the form:

(situation,) = (action,)

(situation,) (action,)

(situation.) (ciný

The performar ze element repeatedly selects a rule whose situation part (left,
hand side) matches the current state and applies thL rule by performing the
action indicated (right-hand side). The action usually has the effect of moving
the performance element to a new state, closer to the goil.

F6r most of the programs discussed in this section, the possible actions
are provided in advance. The problem addressed by the learning element is to
determine under what situations the actions should be applied. This learning
problem is similar in many ways to the problems addressed in Section XIV.D4
on learning multiple concepts.

However, two factors make this learning problem more difficult. First,
because the rules must be chained together, the learning element has to
consider possible interactions among the rules when it modifies the knowledge
base. In LEX, for example, the learning element might decide that in any
integral of the form

f cI(z) dt,

the constant c should always be factored out. This is expressed in LEX as the
prrduction rule

If the integral has the form f Cf(z) dx, then apply OP03,

where OP03 converts f cf(z) dz to cf /(z) dx." Unfortunately, if the constant
c is 0 or 1, this is not an advisable step. Instead, OP08 (convert I. 1(z) to 1(z))
or OP15 (convert 0. 1(z) to 0) should be applied. When LEX is learning the
production rule for OP03, it musttake into account these possible interactions
with OPOS and OHM5. In fact, LEX's goal is to discover the best operato., to
apply in every nitim.tion. Thus,'any time more than one operator is applicable
because of overlapping left-hand sides, LEX must elimninate the overlap. In
this caw, the appropriate rule for 01103 is:

If the integral hAs the form f ef(z) dz A c ;A 0 Ac y6 1, then apply OP03.

This is a particular instante of the general problem of incorporating new
krowledge into the knowledge base (see Artirle XIV.A).
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The second difficult aspect of multiple-step tasks is the problem of credit
assignment. In single-step tasks, the system has available a performance

- - -estandard that can be employed immediately after a rule is applied to deter-
mine whether or not the rule is correct. In disease diagnosis, for example,
the learning element receives the correct disease classification along with each
"training instance. The performance element can apply its diagnosis rules and
receive immediate feedback on the correctness of those rules. The perfor-
mance standard caa even be incorporated directly into the learning process
as in the version-space method, in which the correct classification determines
how the version space is updated.

In multiple-step tasks, however, feedback from the performance standard
is not usually available until the game is completed or the problem is solved.
The program can determine only whether the entire sequence of rules was
good or bad. The credit-assignment problem is the problem of converting this
overall performance standard :nto a performance standard for each rule. The
.e rail credit or blame must be parceled out somehow among the individual
rules that were applied.

SThe Importance of a Transparent Performance Element

To solve these problems of integration and credit assignment, it is criti-
cally important for the performance element to be transpr.rent. A transparent
performance element can provide the learning element with a trace of all
actions that it considered, as well as those it actually performed. This allows
the learning element to determine all of the rules that might have been appli-
cable at each step of the problem-solving process. Such information makes it
easier to solve the problem of integrating new rules-into the knowledge base.

A complete performance trace also aids the credit-assignnment task. During
credit assignment, it is very useful to know why the performance element
chose the rules that it did and what it expected those rules to do. By compar.
ing the goals and expectations of the performance element with what really
transpired, credit and blame can be assigned to individual decisions.

Eztracting Local Training Instances from tMe Performance Trace

When the learning system for a multiple-step task is presented with a
training instance--such as a board position in checkers and knowledge of
which side can win from that position-it cannot immediately learn from the
training insttance. Instead, it must actually pcrforrn the task -that is, play
out ti., checkers game-and compare the result with the information supplied
by the performance standard--that is, which side should have won. During
credit assignment, it can actually decide which individual decisions were good
and which bad, and these evaluated decisions can serve as training instances
for learning the left-hand sides of the production rules in the knowledge base.
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By performing the task and assigning cr'edit and blame, the "global" training
instances can be converted into "local" training instances.

For example, in LEX. a global training instance consists of an integral
such as

J dz

along with knowledge of whether or not the integral can be solved. The
solution trace (see Fig. DS-1) shows that OP12 should not have been aprlied,
since it leads to a complicated expression that requires several wore steps to
solve, but that OP03 and OP02 were used correctly.

Thus, three local training instances can be extracted:

Jf2' dz =i OP12 (negative).

S2zW d a* OPO (positive).

2fz'dz ,- OP02 (positive).

"Once local training instances have been extracted, the techniques for
doing concept learning discussed in Sections XIV.D3 and XIV.D4 can be applied
to learn the left-hand sides of the production rules in the knowledge baie.
Figure DS-2 shows a slight perturbation of the simple learning-system model
presented in Article XIV.A. The model now contains a loop in which the
performance trace is analy2ed by the learning element to extract local training
instances. Global training instances are still supplied by the environment.

f 22 dz

0P12 0P03

/ 2Po
f i.. .T2 z24d

Figure DS-1. Asample performance trace.
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Figure D5-2. A modified modcl of learning systems.

The five systems presented in this section all perform multiple-step tasks
and, consequently, must address problems of integrating new rules and assign-
ing credit and blame. Waterman, and to some extent Samuel, simplilies
the credit-assignment problem by obtaining a move-by-move performance
standard from the environm ent. Furthermore, all of the system s, except
Waterman's pokcý- system, ignore the problem of integrating new rules into the
knowledge base. Work in this area is still in its infancy, and more sophisticated
learning systems for multiple-step tasks can be expected in the future.

References

Buchanan, Mitchell. Smith, and Johnson (1977) provide another perspec-
tive on the use of feedback in learning systems.



D5a. Samuel's Checkers Player

FROM 1947 to 1967, Aitnur Samuuei conductd a continuing researr4, project
aimed at developing a checkers-playing program that was able to learn from
experience. Samuel investigated three different representations for checkers
knowledge-memorized moves, polynomial evaluation functions, and signs-
ture tables--and two diffc-ent training methods-self-play and book-move
learning. The work on rote learning of checkers moves is discussed in Article
XIV.M2. The present article discusses two specific learning situations: (a) self-
play a• it was used to learn a polynomial evaluation function and (b) book-
move training as it was used to learn a set of signature tables. Samuel
experimented with several other combinations of training methods and repre-
sentations (for more details, see Samuel, 1950, 1967).

The performance element in all of Samuel's systems employs a look-ahead,
game-tree sear, It to determine which moves to make (see Articles II.B3 and
11.C5, in Vol. i). The performance element uses a static evaluation function
(Article ii.Cm) to evaluate possible future positions in the game and applies
alpha-beta minimaxing to determine the best move to make. The goal of the
learning process is to establish and improve this static evaluation function
through experience.

Learning a Polynomial Evaluation Function Through Sell-play

The first static evaluation function investigated by Samuel was a poly-
nomial of the form

valie Wf,

where f, are board features and wi are real-valued weights (coefficients). For
most of Samuel's experiments, a polynomial with 16 features was employed.
Each board feature provides a numerical measure of some aspect of the board
position under levaluation. Fior example, the rXCH feature measures the

relative ezchange advantage of the player whose turn it is to move. EXCH
is computed by 'taking Teu,..t, the total number of squares into which the
player to move v~ay advance a piece, and in so doing force an exchange, and
subtracting Tl",•, the corresponding quantity for the previous move by the
opposing player.

Samuel's progran faced two tasks in attempting to learn such a poly-
nomial evaluation function: (a) discovering which features to use in the func-
tion and (b) develdping appropriate weights for combining the various features
to obtain a value fIr the board position. We describe the weight-learning task
first and later retu n to the problem of discovering which rfklures to use.

457
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In the selt'play modt of training, th'checkrs program Iearns by playing
N-a copy of it-self. The version of the program that is doing the learning is

referred to as Alpha, while the copy that serves as an opponent is called
Beta. The learning procedure employed by Alpha is to compare at each turn
"its estimate of the value for the current board position with a performance
standard that provides a more accurate estimate of that value. The difference
between these two estimates controls the adjustment of the weights in the
evaluation function. Alpha's estimate is developed by conducting a shallow
"minimax search applying the evaluation polynomial to tip board positions
and backing up these values (see Article tI.CSa, in Vol. I). The performance
standard is obtained by conducting a deeper minimax search into future board
positions using the same evaluation function as in the shallow search. Samuel
takes advantage of the fact that a deep search is usually more accurate than
a shallow one.

flow does Alpha use this move-by-move performance standard to guide
its search for proper weighting coefficients? First, the difference, 4, between
the performance standard and Alpha's estimate is computed. If A is negative,
Alpha's polynomial is overestimating the value of the position. if A is positive,
Alpha is underestimating it. For each board feature, a count is kept of the
times that the sign of that feature agrees or disagrees with the sign of A. From
these tallies, a correlation coefficient is developed that indicates the degree
to which that feature predicts A. The goal of the learning procedure is to
minimize A (so that Alpha is duplicating the evaluations of the performance
standard). The weights of the polynomial are determined by scaling the
correlation coefficients onto the range -2i to 218. Large positive coefficients
are given to features that strongly predict positive values of A and vice versa,
so that the polynomial will tend to "follow" A and thus reduce it.

The overall effect of this scheme is to independently assign blame for
A Alpha's estimation errors to the individual features. This is sensible, since

the features are combinedindependently (i.e., by addition, without any inter-
-7' - action terms) to form the polynomial.

Alpha can be viewed as conducting a hill-climbing search through the
"rule space"-the space of possible weights. Each move in the checkers
game serves as a training instance to guide this search. The correlation
coefficients summarize the entire body of training instances and indicate in
which direction the search must move in order to minimize A.

Hill-climbing is known to have many drawbacks, including convergence
7" to local maxima. Samuel addresses this problem as follows. When Alpha and

Beta commence play, they are identical. Ilowever, while Alpha proceeds to
search the rule space, Beta does not change. As Alpha improves, it begins to
defeat Beta regularly. When Alpha has won a majority of the games played,
Beta adopts Alpha's improved evaluation function, and the count of games
won and lost is started again from zero. Beta is thus used to "remember" a
good point in the rule space. If Alpha is at a local maximum, however, its

.
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performance will tend to worsen whenever it makes a minor modification to its
polynomial. To prevent a local maximum from halting Alpha's improvement,
an arbitrary change is made to Alpha's scoring polynomial whenever Alpha
lmes three games to Beta. The largest weight in Alpha's polynomial is set at
zero to jump Alpha to some new point in the rule space.

Now that we have seen how Samuel's program determines the weights
for the evaluation polynomial, we turn our attention to the first learning
problem-determining what features should be used to evaluate a board posi-
tion. This is a variant of the problem of new terms (see Article XIV.Di): How
can a learning program discover the appropriate terms ror representing its
acquired knowledge? Samuel offers a partial solution to this problem, namrnly,
term selection. The learning program is provided with a list of 38 possible
terms. Its learning task is to select a subset of 16 of these terms to ;nclude in
the evaluation polynomial.

The selection process is quite straightforward. The program starts with
a random sample of 16 features. For each feature in the polynomial, a count
is kept of how many times that feature has had the lowest weight (i.e., the
weight nearest zero). This count is incremented after each move by Alpha.
When the count for some feature exceeds 32, that feat .:re is removed from the
polynomial and replaced by a new term. At all times, 16 features are included
in the polynomial, and the remaining 22 features form a reserve queue. New
features are selected from the top of the queue, while features removed from
the polynomial are placed at the end of the queue. Viewed in the context of
credit assignment, Samuel's program assigns blame to reatures whose weights
have values near zero, since those features are making no contribution to the
evaluation function.

Samuel (1950) was dissatisfied with this term-selection approach to the
new-term problem. He writes:

It might be argued that this procedure of having the program select new
terms for the evaluation polynomial from a supplied list is much too simple
and that the program should generate terms for itself. Unfortunately, no
satisfactory scheme for doing this has yet been devised. (p. 220)

The feature-selection and weight-adjustment learning processes take place
concurrently. In Samuel's experiment with these learning methods, the set of
selected features and their weights started to stabilize after roughly 32 games
of self-play. The resulting program was able to play a "better-than-average"
game of checkers (Samuel, 1059, p. 222).

Learning a Signature Table by, Book Training

The second kind of static evaluation function investigated by Samuel was
a system of signature tables. A signature table is an n-dimensional array. Each
dimension of the array corresponds to one of the measured board features.

/I 
1 . -
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To obtain 'he estimated value of a hoard position, we measure each of the
board features and idex these values into the signature-table array. The
contents of each cell in the table is a number that gives the value of the
corresponding board position. In a sense, the signature table maps all possible
board positions into a small n-dimensional feature space. Every point in that
feature space is represented as a cell in the signature table that gives the value
of all board positiors mapped to that point.

Suppose, for example, that we had only three features: KCENT (king
center control), MOB (total mobility), and GUARD (back-row control). The
cube shown in Figure D5a-l is a schematic diagram of the resulting signature
table. Notice that KCENT and GUARD take on only the values -1, 0, and 1,
while MOB is allowed to take on values from -2 to +2. If we have a board
position for which KCENT = ,I GUARD = 0, and MOB = 2, then we look into
the signature table at the cell addressed by (1, 0, 2) to obtain the value: .8.

It is possible to view this signature table as a set of 3 X 3 X 5
415 production rules. There is one rule for every possible combinatior of
features-every cell-in the table. The rule for the situation illur.rated in
Figure D5a-I could be stated as

I [f: KCENT - I A GUARD 0 A MCB =2,

Then: Value of position o .8.

Signature tables are more expressive than linear polynomials because they
can capture interactions among all of the features. Their main drawbacks,
however, are their large size and related problems with learnability. A full
signature table for the entire set of 24 terms used by Samuel would contain
roughly 6 X 1012 cells-far too large to be stored or effectively learned. Two
techniques were applied to overcome these problems. First, the number of
possible values for each feature was substantially reduced. Most features were
restricted to three values: +1 ',if the position is good for the program), 0 (if
the position is even), and - I (if the position is bad for the program). Second,

GUARD0

-2 -1 0 1 2

MOB

Figure DSa-1. A three-dimensional signature table.
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w~ udm.amp of a Td

ta"a

3 5 12

(from Samuel, 1967).If instead of one giant signature table, Samue! adopted the three-level hierarchy

The 24 board teatures are partitioned into six important subgroups, and
a separate signature table is developed for each group. The outputs of" the
six first-level signature tables are values between -2 and +2 that are used as
indexes to two second-level signature tables. The second-level tables produce
values between -7 and +7 that are used as indexes to the final signature__

j ~table to obtain the estimated value of" the board position. This hierarchical
• system was found to be expressive enough to support excellent chcckers play

and small enough to be learnable.
The program learns the walues ror the cells in these tables by rollowing

"hbook -anes" played between two master checkers-players. Approximately
2.50,O00, board siturations of m'mLster play wcre presented to the program. Most
of these moves were select~ed f'rom games ending in a draw. The program
operates as follows. Each cell in the signature table is associated with two
counts, called A (agree) and D Cdiffer). Initially, .' and D are zero for each
cell. At each move, the program is faced with a set of alternative moves, one

- _ -. \
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of which is the book-designated move. "Bach of these possible moves can be
mapped into one cell ii each signatt.re table. The program adds a one to the
D count of each cell whose corresponding move was not the book-preferred

* imove. A total of n (where n is the number of nonbook moves) is added to the
A count of each cell corresponding to the book-preferred move. Periodically,
the contents of the signature-table cells themselves are updated to reflect the
A and D counts. Each cell is given the value

(A - D)
(A + D)

which is a rough correlation coefficient indicating the extent to which the
board positions mapped to that cell are the book-preferred moves. The
correlation coefficients are then scaled into the -2 to +2 (or -7 to +7) range.

This learning process can be viewed as a technique of learning from
examples. Each move provides a training instance that is used to update

* 'several signature-table entries. Credit assignment is easy, because the book
provides a fairly reliable performance standard on a move-by-move basis.
Credit is assigned to the signature-table cell corresponding to the book move,
and blame is allotted to all cells corresponding to rejected alternative moves.
It is the learning-by-doing approach that allows the program to determine
which moves are the alternative moves.

The second- and third-level tables are trained at the same time, and by
the same techniques, as the first-level tables. The current contents of the
signature tables are used to determine which second- and third-level cells
correspond to the alternative moves under consideration, and their A and D
totals are updated during each move. The learning process is quite erratic
at the start, since most of the first-level signature-table cells contain zeros
initially. Thits, incorrect second- and third-level cells are selec.ed during the
early stages of learning. As learning progresses, these errors are overcome.

To make the tables more reliable during the early stages of training,
some smoothing is done to fill in cells for which the A and D counts are still
near zero. Smoothing is a form of generalization involving interpolating and
extrapolating from surrounding cells in the table. The smoothing has no etfect
on the A and D counts-these are used later to replace the interpolated values
with more accurate, induced values.

One other refinement of the signature-table system is to break the game
of checkers into seven chronological phases and to use a dilTerent signature
table for each phase. Samuel reasoned that the board features relevant to
determining good moves during the opening of the gnme are mnlikely to be the
same as those used during the ends of games. The seven-phase approach leads
to an increase in the number of cells, titrs making the tables more dirncuilt to
learn. However, Samuel was able to fill in empty cells by smoothing from the
tables of adjacent phases.
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Results

Samuel's signature-table system was much more effective as a checkers
player than any of the other configurations he tested. To assess the goodness of
play, Samuel tested the program on 895 book moves that were not used during
the training. A count was made of the number of times that the program
rated 0, 1, 2, etc., moves as equal to or better than the book-recommended
move. After training on 173,989 book moves, the test gave the results shown
in Table D5a-1. By summing the first two columns, we see that the program
chooses the best move or the second-best move, as defined ty the book,
64% of the time. These ratings are made without employing any forward
search. Minimax look-ahe~d search improves the performance of the program
substantially.

Despite this impressive level of performance, champion checkers players
are still able to beat the program. In 1965, the world champion, W. F". H[ellman
won all four correspondence games played against the program. lie drew with
the program during one "hurriedly played cross-board game" (Samnuel, 1967,
p. 601, a. 2).

Comparison of the Signature-table and Polynomial Methods

The signature-table method substantially outperformed the polynomial-
evaluation-function approach. E-:n when both methods were trained by
following book moves, the moves chosen by the polynomial evaluation function
correlated with the book-indicated moves only half as well as the moves chosen
by the signature tables. This difference is di'e to the improved representational
power of the signature tables. The signature table can represent nonlinear
relationships among the various terms, since there is a different table cell
for each possible combination of terms. In the polynomial representation,
only linear relationships are possible. Such a representation assumes that
each term contributes independently to the value of a board position. This
assumption is evidently incorrect for checkers.

Conclusion

Samuel developed and tested several different representations and training
teclaiiques for teaching a program to play checkers. Among the contributions

TABLE D5a-l
Evaluation of Signature-table Performance

Number of moves rated
as better than or
equal to book move 0 1 2 3 4 5 6

Relative proportion .387 26%0 16475 10% 6% 3% 1%15
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of this work are (a) the'demonstration thiat machine-learning techniques can
be highly successful, (b) the technique of using a deeper search and book-
supplied moves to solve the credit--assignment problem, (c) the term-seiect.ion
methods for determining which features to incbude in the polynomial evalua-
tion function, and (d) the demonstration that signature tables provide a much
more effective representation for checkers kaowledge than either the linear-
polynomial or the rote-learning techniques.

References
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Dhb. Waterman's Poker Player

As PART of his thesis project, Donald Waterman (1968) devwloied a computer
program that learns to play draw poker. Draw poker is a game of imperfect
information in which psychological factors, such ,i how easily one's opponent
is bluff.d, become important. Mintmax look-ahead search is not possible
because the overall state of the game (i.e., the contents of all the hands)
is not completely known. Instead, approximate heuristic mcthods must be
used. Waterman developed a production systcm (see Article Il4.C4, in Vol. 1)to
encode a set of heuristics for poker, and he sought to have his program discover
these production rules through experience. In this article, we first describe
Waterman's production-;ule knowledge representation and its application in
the poker-playing performance element; we then discuss in detail the methods
used in the learning element to acquire and refine these production rules.

Waterman's Performance Element for Draw Poker

Each game of draw poker is divided into five stages. First, each player
is dealt five cards. This is followed by a betting stage in which the players
alternately choose to place a bet larger than the opponent's bet (RAISE), place
a bet equal to the opponent's bet (CALL), or give up (DROP) the hand; a CALL
or DROP action ends this stage. In the third stage, each player has the option
of replacing up to three of his (or her) cards with new cards drawn rrom the
deck. This is followed by another betting stage like the first. Finally, the
hands are compared (except, in a DROP), and the player with the best hand
wins the game.

Waterman's performance element has built-in routines for carrying out
the deal, the draw, and the final comparison of hands. The two betting
stages, however, are performed by a modifiable production system. It is the
production rules making up this production system that the program attempts
to learn and improve.

The production system developed by Waterman contains two basic kindsI of rules: interpretation rules that compute important features of the game
situation and action rules that decide which action (CALL, DROP, or RAISE)

to take.
The action rules make their decisions based on the values of seven key

"variables that make up the so-called dynamic state vector:

"(VDMAND, POT, LASTBET. BLUFFO, POTBET, ORP. OSTYLE).

VOHAND, for example, L a measure of the value of the program's hand, POT is
the current amount of money in the pot, amd BLUFFO is an estimate of the
opponent's "bluffability."

465
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The interpretation rules compute the values of thebe seven variables from
directly observable quantities. To compute the value of BLUFFO, for example,
features such as OBLUFFS (the number of times the opponent has been caught
bluffing) and OCORIEL (the correlation between the opponent's hands and his
bets) are examined. Once numeric values for the seven variables have been
computed, they are converted into symbolic values that describe important
sabranges of values. For example, the rule

If POT > 50. then POT = BICPOT.

gives POT the symbolic value BIGPOT whenever POT is larger than 50.
The action rules are stated solely in terms of these symbolic values. A

typical action rule is

(SUREUIN, BIGPOr. POSITIVEBET. *, *, *, *)

,• (' POT * (2 X LASTBET). 0. 0. *. *, *) CALL,

which can be paraphrased as

It. VTDAND - SUREINI
"and POT = BIGPOT

and LASTBET = POSITUVEBIT,

Then: POT : POT * (2 X LASTBET)
LASTSET : 0

"CALL.

"The condition and action parts of the rule have the same form As the state
"vector. The left-hand side of the rule is a pattern that is matched against
the state vector to determine whether the rule should be executed. The right-
hand side of the rule indicates which action to take and provides instructions
(or modifying the value of the state vector.

These production rules are applied by the performance element as Follows.
First, all oF the interpretation rules are used to analyse the current game
situation in order to develop the dynamic-state vector. Next, the action
rules are examined one by one in a fized order until a rule is found whose
condition pattern matches the state vector. That rule is executed to make
the program's move. This fixed ordering For the production rules serves as
a conflict-resolution technique (see Article uin.t, in Vol. 0). [f more than one
rule is applicable in a given situation, only the first rule in the list is executed.
Hence, when new rules are acquired or old rules are modified, the order of the
rules mst be. carefully considered.

There are two basic ways to generaliLe the left-hand side of an action rule.
One method is to drop a condition by replacing one of the symbolic values
on the left-hand side (e.g., BIGPOT) by ., which matches any value. The other
method is to modify the interpretation rule that delines a symbolic value so
that it includes a larger set of underlying numeric values (e.g., charging 9IGPOT
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to be any POT" > 4a). This is tihe same -,s Michalski's method of generalizing
by internal disjunction (:r-e Article XIV.Dt). We will see below how Waterman
makes use of these two generalization methods.

Learning to Play P,3ker

" ~Waterman sought to bare the program learn the interpretation rules, the

• ~action rules, and the ordering of the action rules by playing potker games
• against an expert opponent. As the poker garnes proceed, the learning element

analyzes each of the decisions of the performance element and extracts train-
ing instances. Each training instance is in the form of a training ruke, that is,
a specific production -ule that would have madJe the correct decision bad it
been chosen and executed. The training ruies guide the lear Ining element as
it dietermines which production rules to generalize anid speciilize.

The task of extracting a training rule is qttite difficult, L.-cause the envi-
ronment provides very little inf'ormation that could serve. as a performance
standard. Unlike deterministic games such as clbeckers or Ichess that have
no chance element, poker is probabilistic. Even an expert 'player will lose

from time to time. Thus, the program must ,,lay several hands before it can
a s the quality of the production rules in its knowledge bAge. As discud

in tire introduction to this section (Article XIV.D5), however, even when a
reliable performance standard L P awalable on a fule-game hasis, the problem
ob assigning credit or blame to ind'vidual moves in thao game is still very
difficult. Consequently, Waterman sought to provide the programr with some

form of move-by-move performance standard. Three different techniques were
developed advice-taking, automatic training, and analytic tr ,a'ning.

In advice-taking, the program plays a series of poker games against a
human expert. After each turn by the performance element, the learning ele-
ment aLsks ehe expert whether the performance-element action is correct. The
expert responds either with (OK) or with some advice such as (CALL BECAUSE

YOURt HAND 1$ FAIR. T•IE POT IS LARGE. AND THK LASTBET ISj LARGE). This ad-
vice providen the training rule directly.

In the autom atic-training approach, ar s expert program serves as the

opponent and advice-giver. The expert program uses a knowledge base of
production rules developed by Waterman himself to determine, at each move,
what action to take. During play against ihe learning program, the expert
program compares eact move made by the learning program with the move
it would have made and provides advio e exactly as a human k le e.x t would.

intirlly, the most intohie.ting method or iticlexct.ion, the analytic method,

involves no advice-taking whatsoever. After each full round of play (i.e., each
single hand), the learning element avalyzes the moves made by the perfor-
mance element and attempts to deduce which moves were incorrect. In
place of an externally supplied performance sta-dard, the learning element is
provided with a predicate-calculus axiomatizat-on of the rules of poker. From
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these axioms, the program is able to deduce, af'.er the hand is over, what the
correct decisions would have been, thus providing the learning element with
a performance standard.

Once the learning element has a move-by-move performance standard, it

can extract a training rule and modify the production system. The modifica-
tion process works by first locating the production rule that made the incorrect
decision and then examining the Est of productiun rules for a rule before or
after the error-causing rule that. could have made the correct decision. It

such a rule is found, generalization and specialization techniques are applied
to modify the production rules so that the proper rule would have been exe-
cuted. If no such rule is found, the training rule itoelf is inserted into the
production-rule list immediately in front of the error-causing rule.

In the remainder of this article, we discums how each of these three training
techniqtt's allows the learning element to develop a training rule. For the
advice-taking and automatic-training methods, this is straightforward. In t.e
analytic approach, however, a series of credit-assignment problemiks must be
solved. We describe Waterman's solutic. s in detail. Finally, we describe how

the training rule acquired by any one o" these methods is used to modi'y the
current set of production rules in the knowledge base.

Advice-taking and Automatic Training

In the advice-taking and automatic-training methods, the program in
supplied after each move with advice such as:

(C.LL. BECAUSE TOUR HAND IS FAIl, TIE POT IS LAIGE,

AND THE LASTBET IS LARGE).

This advice provides the training rule directly. The proper action (i.e., the
right-hand side of the training rule), CALL, is indicated along with the -elevant
variables and their values. This advi-c is eNuivalcnt to the production rule:

(FAIR. LARGE. LARGE,. . *, .)

S(.., POT * (2 X LASTBET). 0, *. *. 0. *) CALL.

The details of the right-hand side of the rule can be filled in automatically
for each action from knowledge of the rules of the game. In this case, for
example, CALL requires the program to match its opponent's bet, and thus the
POT must incrcase by twice LASTBET, once for the opponent's bet and again
for the program's reply. The other possibilities, DROP and RAISE, are handled
similarly.

It is interesting to note that Waterman's program accepts fairly low-level
advice. The expert's advice can easily he interpreted in terms of the present
game situation, so there is no need to interpret or operationalize the advice
(.see Article XM.CO). Waterman's advice-taking research concentrates, instead,

' L/
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on the problem of integrating this advice into the current knowledge base.
We describe how this happens after we discuss the methods employed during
analytic training to obtain the training rule.

Learning by the Analytic Techniquw

The main difficulty facing Waterman's program during analytic training
is credit assignment. The learning element has to deal with a pair of credit-
assignment problems. The first problem is determining the quality ofa round
of play. As we mentioned above, the probabilistic nature of draw poker makes
this difficult, since the loss of a single hand does not necessarily indicate that
the program is playing poorly. Furthermore, the fact that poker is a game
of imperfect information leads to difficulties. If, for example, the program
"drops* its bid (i.e., folds its hand and gives in to the other player), the
contents of the opponent's hand are never known. The program solves this
first credit-assignment problem by always "calling" the bid (i.e., meeting the
opponent's bet and requesting to see his hand), instead of dropping, and. by
applying its knowledge of the rules of poker to deduce whether the program
could have improved its play within the round.

If the program could have done better, it turns its attention to the second.
credit-assignmenk problem- determining which individual moves were poor.
During the round of play, a complete trace of the actions of the performance
element is kept. To solve the second credit-assignment problem, &he learning
element applies its axiomatisation of the rules of poker to evaluate each move
in detail. The rules of poker are axiomatized in predicate calculus as a set of
implications such as:

ACTION(CALL) A I310EKR(YOURHAND, OPPEAND)

: ADD(LASlUET. POT) A ADD(POT. TOUMCOG)).

These statements define the ,ffects of each of four possible actions: BET NICE,
BDr LOk, CALL, and DiOP. To evaluate a particular move in the game, the
learning element takes the value of the dynamic state vector at that point and
uses it to determine the truth value of certain predicates in this axiom system
(e.g., GOOD(OPPUAND), * ICIEE(OPPIAID. TOUVASN)). Then it tries to prove the
statement

MAXIMIZE (YOUISCOIK)

by backward-chaining through the axiom system (see Article t11.C4, in Vol. -).
The resulting proof indicates the action thait should have been performed and
provides the move-by-movc performance standard. When the performance
standard differs from the move made by the program, blame is assigned to
that move, and the "zarning element builds a training rule.

The correct decision, obtained from the performance standard, forms the
right-hand side (action part) of the training rule. Waterman axiomatized the

/ ,.--7. ;N. ,. • -
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RAISE action as two podsible 3ubactions, BET HIGH and SET LOW, so that the
program would not have to learn how big a bet to make. For BET HIqH, the
performance element chooses a random bet between 10 and 20. Similarly, a
B3T LOW action leads to a random bet between 1 and 0. Thus, the performance
standard provides tl~e complete right~hand side of the training rule.

The left-hand side of the training rule is obtained by examining a table
called the decision matrix. The decision matrix contains four abstract rules,
one for each possible action. These rules tell which values of the seven
state variables are relevant for the indicated action. The exact values of the
variables are not given-only a general indication of whether the values should

A be large or small. For instance, the abstract rule for the DROP action is

(CURRENT LARGE. LAIG?.. SMALL. SMALL. CURRENT, LARGE) -0 DROP,

or more clearly,

if: VDRAND -a(curre6nt symbolic value of VDEAND)
and POT =LARGE

and LASTUET =LARGE

and DLUFFO - SMALL
and VOTBE? - SMALL
and ORP -(current symbolic value of ORP)
and OSTTLE - LARGE,
Then: DROP.

Once the learning element has deduced from the axioms that the proper
action would have been DROP, it takes the corresponding rule from the decision
matrix arnd uses it as the training rule. Notice that the level of abstraction of
the rules in the decision matrix is the same as the level of abstraction of the
advice supplied by the human expert or expert program.

It could be argued that the use of Lhe decision matrix in improper, since
it provides the learning element with essential information that a p-rson who
was learning to play poker would have to discover himself. Waterman (1888)
suggests some methods by which the decision matrix could be learned from
experience, but none of these was implemented.

Msing the Training R~ule to Mfodify the Knowtedge Base

Once the training rule in obtained, whether by -dvice from a person, by
- advice From the expert program, or by analysis, it must be used to modify

* ~the lproduction rules in the knowledge base. The training rule is first used
to modify the interpretation rules. The left-hand side of thc training rule is
compared with the state vector computed by the interpretation rules. LARGE
matches symbolic vs,!Lees that co'-respond to large values of the underlying
variable. Similarly, SMALL matches small values. If a symbol does not match,
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the interpretation rules that computed th,. •. bol are assigned blame. They
are then either modified or augmented tŽ .,hide a new interpretation rule.

Suppose, for example, that the state vcc. r Rated POT as having the value
P3, where P3 is derived by the interpret a,;iv rule:

11 POT > 20, ý.,n POT a P3.

Furthermore, suppose that the value u' rUT in the game situation being ana-
lyzed is 45. By comparing PS with LARGE, the learning element determines that
this interpretation rule is incorrect (iince PS can refer to very small values oa
POT). The learning element can either modify the rule (by substituting 44 for
20) or create a new rule. A user-supplied parameter, Xx, specifies the largest
allowable change that can be made to a numeric value in an interpretation
rule. In this cawe, we will assume that the learning element creates the new
rule

rI POT > 44. then POT a P4.

and modifies the state vector so that POT has the value P4.

Once the interpretation rules have been checked and modified, the up-
dated state vector is matched against the action rules to find the rule that
made the incorrect decision. This rule is called the error-couning rule. The
training rule is then used to locate a production rule that could have made
the correct decision had it been executed. This is accomplished by comparing
the right-hand side ot the training rule with each production rule in the rule
base.

Waterman's program classifies action rules as either recently hypothesized
"or accepted. A recently hypothesized rule is one that was recently added to the
knowledge base, whereas an accepted rule is one that the program believes to
be nearly correct. The learning element follows a strategy of first attempting
to make minor changes in accepted rules and then, if minor changes do not
suffice, attempting to make major changes in recently hypothesized rules.
Finally, if a suitable recently hypothesized rule cannot be found, the training
rule is added to the rule base and is labeled as recently hypothesized.

The learning element searches upward ahead of the error-causing rule
.for an accepted rule that would have made the correct decision. If such a

rule is found, it is checked to see if the pattern of its left-hand side can be
generalized to match the current state vector. Only minor generalizations-
that is, changes to the interpretation rules--are considered. No conditions
are dropped (i.e., replaced by .).

If no accepted rule can be round, the learning element again searches
upward before the error-causing rule, this time looking for a recently hypothe-
sized rule that would have made the correct decisien. If such a rule is
found, major changes--including both dropping conditions and modifying
interpretation rules--are made in the left-hand-side pattern so that it matches
the state vector.

iF
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If no suitable rules can be found before the error-causing rule, the learning
element searches for an accepted rule after the error-causing rule. If an
appropriate rule is round there, the error-causing rule and all intervening
rules must be specialized so that they will not match the state vector, and
the target rule must be generalized-by changing the interpretation rules--so
that it wilt match the state vector.

Finally, if no rules can be found that could be generalized to make the
correct decision, the training rule is inserted into the ordered list of production
rules immediately in front of the error-causing rule. The training rule is
marked as being recently hypothesized. Figure D5b-l depicts this four-step
process of modifying the rule base.

This four-step process combines the task of integrating new knowledge
into the knowledge base with the task of generalizing the training rule. Notice
that the integration process must have knowledge about how the performance
clement chooses which rule to execute, so that it can decide how to update the
rule base. The generalization process is fairly ad hoc. For example, recently
hypothesized rules become accepted when enough conditions are dropped from
the left-hand side so that onl) N conditions remain (N is a parameter given
to the program). This is a very weak technique for preventing rules from
becoming overgeneralized.

Results

Waterman's poker program learned to play a fairly good game of poker.
Separate testa were conducted with each of the three training techniques. In
each case, the program started with only one rule: "In all situations, make a
random decision." For advice-taking from a human expert and for learningIi
A -(- Search for "accepted' rule"

- (?)Search fr"recently-hypothesized" rule

t I ~ nsert training ruleSerror-causing rule

-R. Search for "accepted rule"

Figure D~b-I. The four steps to modifying the production-rule base.

-- -- -- --
7/ _____ /,
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from the expert program, training was continued until the program played
one complete game of five hands without once making an incorrect decision
(as judged by the expert). For the analytic method, the program continued to
play games until the original "random decision" production rule was executed
only 5% of the time. The results are shown in Table DSb-1.

The rightmost column shows the results of a proficiency test in which the
program and a human expert played two sets of 25 hands. During the first
set of 25 hands, the cards were drawn at random from a shuffled deck as in
ordinary play. However, during the second set of 25 hands, the same hands
were used as in the first set, except that the program received the hands
originally dealt to the person and vice versa. At the end, the cumulative
winnings of the program and person were compared.

The results show that in all three training methods, performance improved
markedly. The automatic training provided the best performance improve-
meat, perhaps because the automated expert played more consistently than
the human expert. Although the analytic method performed the poorest, the
results are not strictly comparable, since the a'iom set provided it with only
four possible actions, whereas the advice-based methods were given eight pos-
sible actions. Consequently, the analytic method may not actually be interior
to the two advice-taking methods.

Conehrnen

Waterman's poker-playing program faces a very difficult learning problem.
Poker is a multiple-step task that provides very little feedback to the learning
program. For the two advice-taking methods, this problem is sidestepped
by allowing the program to accept a training rule directly from an expert.
However, for the analytic method, two credit-assignment problems must be
solved: evaluating A round of play and evaluating a particular move. To solve
these problems, the program modifies its betting strategy (to call instead

TABLE D5b-1
Comparison of Three Training Methods (from Waterman, 1070)

Number of Final number Percent differenceTraining method training trials of rules in winnings'

Before training 0 1 -71.0
Advice-taking 38 26 -6.8
Automatic training 20 10 -1.9
Analytic method 57 14 -13.0

'Then percentages are computed by subtracting the amount of money won.
by the opponent from the amount of money won by the program and dividing by
the amount of money won by the opponent. In all eweas, the program won less
than the opponent and, hence, the percentages are all negative.

.7/
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of dropping) and applies knowledge available from the axiom set and from
the decision matrix. This permits the credit,.asignment process to extract a
training rule from the trace of decisions taken by the performance element.
Once the training rule is acquired by any of these three methods, it is used
to guide the generalization and specialization of the production rules in the
knowledge base. Since only positive training instanc-s are available, the
program must make use of arbitrary constraints to prevent overgeneralization.

Rerecesce.
i ~Waterman (1970) describes this work in detail'.
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D5c. HACKER

HACKER is a learning system developed by Gerald Sussman (1975) to model
the process of acquiring programming skills. HACKER's performance task is
to plan the actions of a hypothetical one-armed robot that manipulates stacks
of toy blocks. This planning task is described in detail in Article xV.C.

HACKER learns by doing. It develops plans and simulates their execution.
The plan and the trace of the execution are examined by HACKER to acquire
two kinds of knowledge: generalized subroutines and generalized bugs. A gen-
eralized subroutine is similar to a STRIPS macro operator (see Article ILD5, in
Vol. I), in that it provides a sequence of actions for achieving a general goal.
A generalized bug is a demon that inspects new plans to see if they contain
an instance of the bug and provides an appropriate bug fix.

An example of a generalized subroutine is the following procedure for
stacking one block on top of another:

(TO (MlAE (ON a b))
(IPIOG

(UNTIL (y) (CANNOT (ASSIGN (y) (ON y 5 )))
(MTA K (NOT (ON y a)))

The goal of this procedure is (MAKE (ON a b)): The procedure changes the
world so that (ON a b) is true. This subroutine is general and works for any
two blocks a and b (a and b are variables that are bound to particular blocks--
denoted by capital letters--when the subroutine is invoked). The procedure
removes everything that is on a and then picks up a and puts it on b.-

Viewed as a production rule, this procedure could be written as:

(MAKE (ON a b)) a* (SPROG
(UNTIL (y) (CANNOT (ASSIGN (y) (ON y a)))

(MAKX (NOT (ON y a)))
(PTON a b)).

From this perspective, we see that when HACKER learns a generalized sub.
routine, it is learning both a generalized left-hand side, the goal, and a general-
ized right-hand side, the plan. As we will see below, the left-hand sides of the
production rules are generalized by turning constants into variables, while the
right-hand sides are developed by concatenating subplans and ordering them
properly to form macro operators.

An example of the other kind of knowledge gained by IIACKER-a general-
ized bug-is Lie demon:

(VATZE-FOR (ORDER (PURPOSE line (ACHIEVE (ON a b)))
(PURPOSE 2line (ACHIEVE (ON b c))))

(PI£REQUISITE-CLOBBENS-BiOTmnR-GOAL
current,-prog tline 2iine
(CLEARTOP b))).

475
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t ~It tells HACKER to watch f'or plans in ývhich one step, 11iac, has the goal

of achieving (01 , b) and a subsequent step, 21in., has the goal of achieving
(03 b 0. In such cases, the prerequisite of the second step-that b have
a clear top-requires undoing the goal or the first step. When this demon
detects such bugs, it invokes the PREIEQUISITE-CLOBBDRS-BROTUF-COAL repair
procedure to fix them.

Generalized bugs can also be viewed as production rules. This particular
bug demon could be written as:

(ORDER (PURPOSE lne (ACHIEVE (ON a b)))
(PURPOSE 21ine (ACHIEVE (ON b 0)))) a

(PIRfEQUISITE-CLOIBERS-BROTREU-GOAL
current-pro$ lMlae 21ine
(CL.EAETOP b)).

HACKER learns both the left- and the right-hand sides of these bug demons.

MACKER'. Architecture

HACKER is a complex program that contains several interleaved com-
ponents (see Fig. D5c-1). These include:

1. The planner, which develops plans by pattern-directed expansion of plan.
ning operators;

2. The c.itics' gaillcr, which inspects the plans for knowngeneralized bugs;

3. The simulator, which simulates the execution of the plans and checks for
errors;

4. The debWuger and genevalizer, which locate and repair bugs in the plans
for later use by the critics' gallery; and

5. The general-zev and subroutiniz - which generalize plans and install themn
in HACKER's knowledge base.

The first two components comprise the performance element, which develops
block-stacking plans. The simulator creates a performance trace or the simu-
lated execution of the plan. The last two components perform the actual
process of learning generalized subroutines and generalized bugs.

These components interact continually. As the planner is developing the
plan, for example, the critics' gallery is interrupting to repair known bugs
and the simulator is symbolically executing the evolving plan. Iheo debugger
may step in to rut a new bug and then resume the planning process. In this
article, however, we describe each of these components separatel and pretend
that the plan is first developed in its entirety and then successiv ly criticized,
simulated, debugged, and generalized. This false architecture\ corresponds
fairly closely. to our simple model of learning multiple-step task . There are
two learning elements, however, one for developing generalized subroutines
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and one for developing generalized bugs. Figure D5c- I surtimarizes this false
archiktcture. We willi explain the operation of HACKER by following the flow
through this model.

IL4CKER's Performance Element:
The Planner and the Critics' Gallery

HACKER employs a simple problem-reduction planner (Chap. xv; see also
Article 11.B2, ir Vol. 1), which is preserited with an initial situation and a goal
block-structure to create. Figure D5c-2 shows a sample situation and goal.

The goal is matched against ILACKr.;R's knowledge base of known plans,
subroutines, and refinemeut rules. If a known plan or subroutine is found that

Performance Element

Critics'Naive
GallLeryninear Planner

Plan

Criticized Per formance Trace Knowledge Base

Plan

Subroutine Bus
Library Library

Simulator

DebuggerBug
Deugr And Generaiizer

Fix

Bug Learning Element

Figure D5c-l. A simplified architecture for IIACKER.
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Goal: (ACRIEVE (AID (ON A B) (O C A)))

Figure Dtc-2. A sample situation and goal.

can accomplish the goal, it is used. Otherwise, a refinement rule is applied
to reformulate the goal as a set of subgoals. These subgoals, in turn, are
matched against the knowledge base to locate knowu methods for achieving.
them. The expansion into subgoals proceeds until HACKER finds existing
plans or primitive operators that can achieve each of the subgoals.

HACKER is noted for its linearity ausumption. Whenever the planner is
faced with the problem of achieving a pair of conjunctive subgoals, it assumes
that they can be achieved ind.pendently. This assumption is represented in
the AND rule for refining a conjunctive goal:

(TO (ACI•EV. (AND a b))
(AND (ACNIEVE a)

(ACRIEvE b))).

This says 'io achieve goals a and b, first achieve a and then achieve b.V As
a result of this linearity assumption, the plan developed by the planner is a
naive plan that may not work (see Article xv.c).

The naive plan is criticized by the critics in the critics' gallery, which
attempt to find instances of the generalized bugs kept in the bug library.
When a bug is found, the associated bug Gx is applied to improve the plan-
usually by rearranging plan steps. The result of this criticism is a plan that
relelmts all of IIACKER's past experience but still may not be correct.

HtACKER's Performance Trace:
Plans and Simulation

HIACKER's plans contain a large amount of information about the plan-
ning process itself. Each step of a plan is justified by giving the purpose of the
step--the subgoal it is intended to achieve. There are two fundamental kinds
of steps: main steps and prerequisite steps. Main steps are directed at goals
relating to the goals of the overall plan. Prerequisite steps are computations
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needed to establish preconditions for the main steps. For example, the plan

for the problem of Figure D5c-2 contains three steps:

Step 1. (PUTOI C TABLE) (purpose: (CLEARTOP A) span: stop 2]

Step 2. (PUTOI A 3) (purpose: (ON A B) span: full plan] .
Step 3. (POTON C A) (purpose: (ON C A) span: full plan]

Steps 2 and 3 are main steps, while step I is a prerequisite step needed to
clear off the top of A so that the robot can move A. As HACKER simulates the
execution of the plan, it verifies that the goal of each step has been attained.

Each step in the plan also includes an indication of the time span of the
goal it is attaining. The purpose of a step may be to accomplish something
that will remain true for ouly a short time. In this example, (CLRAITOP A) will
be true only until step 3. For IHACKER to know that this is not a bug, step I

includes a time-span indication that its goal is intended to be true only until
the end of step 2.

The criticised plan is simulated to verify that it works properly. The
simulator detects bugs in three forms: illegal operations, failed steps, and
unaesthetic actions. An illegal operation is one that is considerefý impossible
in the hypothetical blocks world. For instance, it is illegal to pick up a
block unless it has a clear top. A failed step is one that does not achieve its
goal for the designated time span. The simulator uses the goal information
attached to each plan step to verify that at all times the goals intended by the
planner have actually beea met. Lastly, an unaesthetic action is a situation
in which the robot moves the same block two times in succession without
any intervening actions. These three methods for detecting bugs provide a
performance standard for HACKER, which states that a plan must execute
legally, achieve all intended goals and subgoals, and also be aesthetically
correct. The simulation halts whenever one of these problems is identified,
and a trace of the simulation is provided to the bug learning element.

HACKER's Learning Elements:
The Subroutine Learning Element and the Bug Learning Element

As mentioned above, there are two learning elements in HACKER. One,
the subroutine learning element, inspects tie criticized plan and simulation
trace to identify possible subroutineb. Phe other, the bug learning element,
examines the performance trace to diagnose and correct bugs uncovered by
the simulation.

The subroutine learning element attempts to detect when two subgoals
in the plan are sufficiently similar to allow a single subroutine to accomplish
both. The trace of the planning and simulation processes indicates which
constants in a goal or subgoal-for example, the constants A and 8 in the
goal (0I A b)-can be generalized. A constant cannot be generalized if the
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plan somehow refers to that constant explicitly (e.g., the constant TABLE has
special status). HACKER generalizes each subgoal in the plan by turning
all generalizable constants into variables. The generalized subgoal is then
compared with all other goals in the program. Any two subgoals found to have
an allowable common generalization are replaced by calls to a parameterized
procedure. This generalization process is similar to the technique used in
STRIPS to generalizc macro operators.

As an example, consider the block-stacking task of Figure D5c-2. The ini-
tial plan involves separate steps for achieving (ON A B) and (ON C A). However,
traces of the planning and simulation process•s indicate that the code for
(03 A B) will work for any variables a and v. The generalized goal (ON a r)
is checked against other goals in the plan and found to match the sub-
goal (ON C A). As a result, RACKER formulates a generalized subroutine,
(MAKE-0 a v), and replaces the subplans for steps 2 and 3 with calls to MAKE-

ON. The MAKE-ON subroutine is placed in the knowledge base for use in future
plans as well.

The subroutine learning element can be regarded as learning from exam-
ples. The goals and subgoals in a particular plan form the training instances,
which are generalized by turning constants into variables. The distinctive
aspect of the HACKER approach is that the search of tho rule space is accom-
plished very directly. HACKER (and its predecessor, STRIPS) is able to reason
about how the different steps in the plan depend on particular values for the
arguments of the goal statement. From this dependency analysis, the correct
generalization can be deduced directly. IhACKER this differs from most of
the other learning methods described in this chapter in that it is able to use
the meanings of its operators to guide the generalization process.

The bug learning element faces a much more difficult learning task; It
must determine why the plan failed and repair the plan. Then it must attempt
to generalize the discovered bug and create a bug critic that will prevent
the bug from reappearing in future plans. The first task-determining why
the plan failed-is the problem of credit assignment. The traditional credit-
assignment problem is to determine which rule, used in the performance
element, led to the mistake. In HACKER's case, there is one fundamental
source of error: the linearity assumption as implemented by the AID rule.
IHACKER's credit assignment, instead, involves determining how the current
planning task violates this linearity assumption--that is, how do the subplans

"4 in this problem interact,
HACKER's solution to the credit-assignment problem is to compare the

intentions and expectations of the performance element with what actually
happened. This approach again relics on knowledge of the semantics of the
operators to assign blame to individual steps. This is more direct than the
weaker, more empirical approach of comparing many possible plans obtained
through a more widespread search, as in Samuel's checkers program and the
LEX system.
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AND

Goal I Goal 2

Prerequisite

Figure D5c-3. The PRIERKQUISITE-CLOBDERS-BIOTREI-COAL
bug schema.

HACKER has a small library of schemas tl'%t describe possible subgoal
interactions. Credit assignment is accomplished by matching these schemas
to the goal structure of the current plan and performance trace. For example,
one class of interactions, the PIEREQUISITE-CLOBDERS-BROTNEi-qOAL, involves
the goal structure depicted in Figure D5c-3.

The prerequisite step of goal 2 somehow makes goal I no longer true. For
example, if the overall goal is (ACHIEVE (AND (ON A 3) (06" B c))),. we have
the subgoal structure shown in Figure D5c-4.

(AND (ON A 8) (ON 8 C))

(0 A B) (aN B C)

(CLEARTOP 3)

Figure D5c-4. A subgoal structure thrt matches the bug schema
of Figure D5c-3.
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HACKER simulates'this plan by first placing block A on block B, then

clearing off B so that it can place B on C. The clearing-off process makes
(0N A B) false-the prerequisite of goal 2 has clobbered goal 1. (This is
detected by the simulator when it checks the time span of each subgoal.)

Each of HACKER's bug schemas describes some general goal structure

that can be matched to the goal structure of the current plan. The matching
process is implemented in an ad hoc fashion as a series of six quc.stions that the
debugger asks of the performance trace. As a result of the matching process,
the bug is ignored as innocuous, is properly classified, or is found to be too

difficult to repair.
The process of repairing the plan is straightforward. Each bug schema

contains instructions on how to repair the bug. These can involve reorder-

ing plan steps, creating new suhp'aius that establish prerequisite conditions,
and even removing unnecessary plat stc-s. The resultin- repaircd plan is
simulated again to detect further bu,,.

The process of generalizing the bug is L.lso easily accomplished. Each bug
schema contains instructions regarding which components of the goal struc-
ture can be generalized by turning constants into variables. For instance, the
bug schema for PREREQUISITE-CLOBBERS-BRL tiER-COAL contains the instruction-

(CSETQ goall (VARIABLIZE (GOAL Iinel))
goal2 (VARIABLIZE (COAL l.ne2))
prereq (VARIABLIZE pre)),

where linor refers to the first goal (whose prerequisite w•.s clobbered), line2

refers to the search goal, and prer.q refers to the prerequisite that did the
clobbering. These instuctions tell [RACKER to analyze the dependencies in
the performance trace and generalize all three of these goal expressions. The
resulting generalized goal structure shown in Figure D5c-5 is compiled into a

ldemon and added to the bug library for use in subsequent criticism of naive

plans.
The bug learning element can be regardcd as learning by schema instan-

tiation. Over time, HACKER discovers new situations in which particular

kinds or subgoal interactions occur, generalizes these situations, and watches
for them in future plans. It does not tackle the problem of discovering these
classes of bugs in the first place, nor does it address the problem of discovering
techniques for fixing bugs.

Conclusion

HACKER is a system that learns to develop plans for manipulating toy
blocks. It acquires two kinds of knowledge-gencralized subroutines and
generalized bugs. Both of HACKER's learning elements make extensive use of
the performance trace, which consists of the plan (annotated with goal infor-

mation) and a trace of the simulated execution of the plan. The subroutine

./ -. ' . •.
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AND

GoalI Goal 2

Prerequisite

Figure D5c-3. The PREREQUISITE-CLOBBEIS-DIBOTHER-COAL
bug schema.

HACKER hba a small library of schemas that describe possible subgoal
interactions. Credit assignment is accomplished by matching these schema@.
to the goal structure of the current plan and performance trace. For example,
one clan of interactions, the PIREREQUISITE-CLOBBERS-BROTNER-GOAL, involves
the goal structure depicted in Figure D5c-3.

The prerequisite step of goal 2 somehow makes goal' I no longer true. For
example, if the overall goal is (ACNIEVE (AIM (ON A 8) (01 3 C))), we have
the subgoal structure shown in Figure D5c-4.

(AND (0 A 3) (0 8 C))

(Off A ) (ON C)

S(CLE.TOP 9)

Figure D5c-4. A subgoal structure that matches the bug schema
of Figure D5c-3.

.. ... .. ... .. .. .--.... . . .........,-,.-t1 , - -.- ..
J. ..
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(AND (ON z y) (ON y z))

(ON x y) (ON Ty )

( METP y)

e Figure DSc-5. A generalized goal structure.

learning element generalizes by analyzing the goal structure in the perfor-
mance trace to determine which constants can be turned into variables. The

• bug learning clement accomplishes credit assignment by instantiating schemas
S~that desJcribe bug-inducing goal structures. The sehema3 provide guidance

for bug repair and generalization. Much of HACKER's impressive behavior
derives from its ability to reason about the semantics of its task. The value of
a transparent performance element for credit assignment and generalization
is very evident in HACKER.

References

HACKER is described in Sussman's (1973) thesis. Doyle (1080) describes
a formalization of the concepts of goal and intention as used by HACKER. An
alternative to the linearity assumption is described in Article XV.DI.
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LEX, a system designed by Thomas Mitchell (see Mitchell, Utgoff, and Banerji,
in press; Mitchell, Utgoff, Nudel, and Banerji, 1081), learns to solve simple
symbolic integration problems from experience. LEX in provided with an
initial knowledge base of roughly 50 integration and simplification operators,
some of which are shown in Table D5d-l. The goal of LEX is to discover

heuristics for when to apply these operators. That is, LEX seeks to develop
production rules of the form

(situation) =* Apply operator OPN,

where (situation) is a pattern that is matched against the current integration
problem. The situations are expressed in a generalization language of possible
patterns. For instance, a heuristic rule for operator OP12 might be:

f f(z)transc(z)dz -* Apply OP12 with u = f(m) and dv = transc(z)dz.

This tells the LEX performance element that i" it sees any problem whose
integrand is the product of any runction, f(z), with a transcendental function,
transc(z), then it should apply OP12 with u bound to f(z) and dv bound to
transe (z) dx. The concepta of f(z) and transc (z) are part of the generalization
language (illustrated later in Fig. DSd-4).

Mitchell calls these production rules heuristics because they provide heuris-
tic guidance to LEX's performance element, which is a simple, forward-chaining
production system (see Sec. 11.B, in Vol. 1). Without any heuristic rules, the
performance element conducts a blind uniform-cost search (see Article 11C1, in
Vol. 1) of the space of all legal sequences of operator applications. Consider the
problem of integrating f 3z cosdx. Without any heuristics, LEX produces
the rather large search tree shown in Figure D5d-1. It is no surprise that

TABLE DSd-I
Selected Integration Operators in LEX

OP02 convert f z'dz to z'"÷/(r + 1) (power rule)
OP0s convert f rf(z) dz to r f 1(z) (factor out a real constant)
01106 convert fsinzdz to -- cosz
OPS convert I ' f(=) to f(z)
O01r0 convert f cos dz to sin z
OP12 convert f ud, to u, - f vdu (integration by parts)
OPIS convert 0.f(z) to 0

484
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OP03 0P12 OP12

3f zcmzdz 3zUsin z - f 3sin x dz

0P12 P12 ~OP03

3(zsinx- fsin x dz) 31(4 cos z) - f (-4•sin z) dzl 3z2sin z - 3 f sin xdz

01,b06 ~OPfl

3(zsinx-(-cosz)) ... 3x sin z- 3(- cosz)

Figure DSd-1. Partial search tree ror f 3U cos x dx without heuristics.

when LEX has no heuristics, it often cannot solve integration problems before
exhausting the time and space available to it.

The task of learning the left-hand sides of heuristic rules can be thought
of as a set or concept-learning tasks. LEX tries to discover, for each operator
OPi, the definition of the concept situationk in which OPN should be used. It
accomplishes this by gathering positive and negative training instances of the
use of the operator. fly analyzing a trace of the actions taken by the perfor-
mance element, LEX is able to find cases of appropriate and inappropriate
application of the operators. These trai'ning instances guide the search of
a rule space of possible left-hand-side patterns. The candidate-elimination
algorithm (see Article XIV.D3a) is employed to search the rule space, and par-
tially learned heuristics, for which the candidate-elimination algorithm ham
not found a unique left-hand-side pattern, are stored as version spaces of
possible patterns. Thus, the general form of a heuristic rule in LEX is:

(version space represented as S and C sets) so Apply OPN.

For exanple, after a few training instances, LEX might have the following
partially learned heuristic for the integration-by-parts heuristic, OP12:

Version space for OP12:

G - f f(z)g(z) dz . OP12, with u f (z) and du g(z) dx;

S f3zcuwxdz : OP12,with u=3z and du=coszdz.

4MEN
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This heuristic tells LEX to apply 0P12 in any situation in which the integral
has the form f f (z)g(z) dx. It also indicates that the correct left-hand-side
pattern lies somewlhcre between the overly specific S pattern, f3zcoszdz,
and the overly general C. pattern, f f(z)g(z)dx. Below, we show how this
partially learned heuristic was discovered by LEX.

LEX's Architecture

LEX is organized as a system of four interacting programs (see Fig. D5d-2)
that correspond closely to our modified model of learning for multiple-step
tasks. The problem solver is the performance element. It solves symbolic inte-
gration problems by applying the current set of operators and their heuristics.
When the problem solver succeeds in solving an integral, a detailed trace of
its performance is provided to the critic, which examines the trace to assign
credit and blame to the individual decisions made by the problem solver.
Onace credit assignment is completed, the critic extracts positive (and negative)
instances of the proper (and. improper) application of particular operators.
These training instances are used by the generalizer to guide the search for
proper heuristics for the operators involved. Finally, the problem generator
inspects the current contents of the knowledge base (i.e., the operators and
their heuristics) and chooses a new problem to present to the problem solver.

".4 LEX thus incorporates all four components of our simple model: the
knowledge base (oa operators and heuristics), the performance element, the
performance trace, and the learning element (composed of the critic and the
generalizer). Furthermore, LEX is one of the few Al learning systems to include

an experiment planner-the problem generator.
In this article, we first present an example of how LEX solves problems

and refines the version spaces of its heuristics. Then we describe each of LEX's
components in detail and discuss some open research problems.

SProblem

Figure Dgd-2. LEX's architecture.

U -
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Lan Esmple

To show how LEX works, suppose that the problem generator has chosen
the problem f 3U cos x dx and the problem solver has produced the trace shown
earlier in Figure DSd-1. The critic analyses the trace and extracts several
training instances, including:

J 3zcos x dx s Op12, with u = 3x and du = coaxdx (positive).

3sinzdx OP03, withr=3and'f(x)-=-sin: (positive).

fsinXil =5 OPOS (positive).

We will watch how the generalizer handles the training instance for OP12.
Let us assume that this is the first training instance that has been found for
this operator, so the knowledge base does not yet contain any heuristics for
when to use it. Consequently, the generalizer will create and initialize a new
OP12 heuristic. The left-hand side of the heuristic is a version space of the
form:

Version space for OP12:

S-- f f(x)g()ds - OP12, with u = 1(z) and dv -g(s) i;

S$ f3zcmxdx -, OP12, with u =3s and dy mcoszdx.

"Notice that S is a copy of the training instance and G is the most general
pattern for which OP12 is legal. This heuristic will recommend that OP12
be applied in any problem whose integrand is less general than f f(x)g(z) dw.
This is not a highly refined heuristic.

To see how LEX refines this heuristic, let us assume that the other training
instances shown above have been processed. At this point, the problem
generator chooses the problem f 5z sin x dx to solve. The problem solver wili
apply OP12, since the G set of the heuristic matches the integrand. Figure
D5d-3 shows a portion of the solution tree.

Some of the training instances extracted by the critic are:

J S:sinzdz =* OP12, with u - 5x and du = sin z d (positive).

I 5cosxdx OP03, with r = 5 andf(x) = cosz (positive).

J cosxdz Opia (positive).

J 5xsin di • OP12, with u = sin: and du 5z dx (negative).
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f Ssinx dx

0P12 0P12

IX25ins-f jz 2 cOSzdX -5Zos z + f 5cosdx

OP03

-5XCosX + 5 fcos: dx
OPI0,

-5z cos x 5 sin x

Figure D5d-3. The solution tree for f 5x sin x dx.

The generalizer updates the version space for OP12 to contain:

G = (g9,g2}, where
g9:f polynom(z)g(z)dz =* OP12,

with u - polynom(z) and dv = g(x).dz;
92: f f(z)transc(z)dz =* 0P12,

with u = f(z) and dti = transc(z) dx;

S = I)t}, where
si:f kxtrig(z)dx = OP12,

with u = kz and dv = trig (z) dx.

The positive training instance forces the constants 3 and 5 to be general-
ized to k, which represents any integer constant, and "sin" and "cos" to be
generalized to "trig," which represents any trigonometric fuinction, as shown in

1a. Similarly, the negative training instance leads to two alternative specializa-
tions. In gt, f was specialized to "polynom" to avoid u = sin z, and in g9,
g was specialized to "transc" to avoid dv = 5x dx. These two specializations
no longer cover the negative training instance. With a few more training
instances, the heuristic for O'12 converges to the form shown at the start of
this article, that is, f f(x) transc (z) dx. The concepts "k," "trig," "polynom,"
and so on, are all part of the generalization language known to LiX from the
start (see Fig. DUd-4, shown later).

Now that we have seen an example of LTJX in action, we describe each of
the four components of LEX in turn.

\/
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The Problem Solver

As discussed above, the problem solver conducts a forward search af
possible operator applications in an attempt to solve the given integration
problem. Initially, this search is blind. However, as the heuristics for the
operators are refined, the search becomes more focused.

The problem solver conducts a uniformn-coat search. At each step, it
choose, the one expansion ot the search tree that has the smallest estimated
cost. The search tree is maintained as a list at open nodes-that is, nodes
to which not all legal integration Operators have been applied. The cost of
an open node is measured by summing the Cost of each search step (tar both
time and space) back to the root af the search tree. In addition, the cost ot a
proposed expansion is weighted to reflect the strength at the heuristic advice
available. In detail, the problem solver chooses an expansion as tollows:

Step 1. For each open node and each lcg.1 operator, compute the "degree
of match* according to the tormula.

0 it no heuristic recommends this operator far this node;

- enn if there is a heuristic, and in out ot the n patterns in the
boundary sets or the version space (i.e., the S and G sets)
match the current situation.

* Step 2. Choose the expansion that has the lowest weighted cost, computed
AN:

(1.5 - degree at match) X (cost so far + estimated expansion cost) .
The effect at the (1.5 - degree of match) weight on the cost is to emphasize
the cost at the path when little heuristic guidance is available but to ignore
cost considerations as the heuristic recommendation becomes stronger.

The problem solver continues to select nodes and apply operators until
the integral is solved. Notice that, in LEX, a simple performance standard
is available: solution of the integral. This is a substantially simpler situation
than that raced by Waterman's poker player, which needs to play several
hands to evaluate how well it is doing. LEX knows when it is doing well.
LEX also knows when it is doing poorly. For each integration problem, the
problem solver, is given a time and space limit. It it runs out at time or space
before solving the problem, it gives up and the problem generator selects a
new problem to solve.

The Critic

The problem solver provides the critic with a dletailed trace at each suc-
cesstully solved problem. The critic's task is to extract positive and negative
training instances trom this trace by assigning credit and blame to individual
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decisions made by the problem solver. The critic solves the credit- assignment.
problem as follows:

1. Every 3earch step along the minimum-cost solution path found by the
problem solver is a positive instance;,

2. Every step that (a) leads from a node on the minimum-cost path to a
node not on this path and (b) leads to a solution path whose length is
greater than or equal to 1.15 times the length of the minimum-coat path
is a negative instance.

These criteria are intended to produce applicability heuristics that guide
the performance element to minimum- cost solutions. To evaluate these criteria
(especially 2b), the critic must re-invoke the problem solver to follow out
paths that appear to be bad. This deeper search is in somc ways analogous
to the deep search Samuel used in his checkers- playing program for solving
the credit-assignment problem. The criterion of minimum-cost solution is
convenient because it can be measured by the computer itself-by its own
experience in attempting to solve the problem.

The critic is fairly conservative. It provides the generalizer only with the
training instances that can be most reliably credited or blamed. However,
the critic is not infallible. It can produce false positive and false negative
training instances when the knowledge base contains incorrect heuristics.
Since the problem solver follows the guidance provided by the heuristics in
the knowledge base, it may believe it has round the lowest cost solution when
in fact, the heuristics have led it astray. Since LEX does not conduct an
exhaustive search of the space, it will not always detect this fact. As a result,
the critic may create false positive and false negative instances. Its reliability
can be improved by increasing the safety factor (normally 1.15) when the
problem solver is re-invoked by the critic. This causes the problem solver
to search more deeply along alternative paths and improves the chances of

finding the true minimum-coat path.

The Generalizer

The generalizer simply applies the candidate-elimination algorithm to
process each of the training instances provided by the critic and to refine the
version spaces of each of the operators. The multiple- boundary-set form of
the algorithm (see Article XIV.D3a) was adopted to handle erroncous training
instances.

The generalizer is able to learn disjunctions in certain cases. During
generalization based on a positive training instance, for examnple, if the version
space would normally be forccd to collapse because. no consistent rule exists,
a second version space is created instead. This second version space contains
the patterns that are consistent with all of the negative instances and the
single new positive instance. As additional positive instances are received,
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they are processed against any version spaCe whose G set covers them. When
more than one heuristic rule is created for a single operator, the effect is the
same as if a single dbjunctive heuristic had been developed.

The generalization language (and, thus, the rule space) in LEX is based
on the tree of functions shown in Figure D5d-4. The most general pattern
is f(z), that is, any real function. The most specific functions are integer
and real constants, sine, cosine, tangent, and so on. This language is known
to have shortcomings (e.g., it cannot describe the class of twice continuously
differentiable functions), but it is adequate for expressing some of the heuris-
tics useful in the domain of symbolic integration.

LEX relies entirely on syntactic generalization methods. It cannot, for
example, analyze the solution of f 3zcoszdx and realize that, since OP03
requires only a real constant r, the oarticular constant 3 can be generalized
to any real constant. This kind of analysis, based on the semantics of the
operators, is done in STRIPS and FIACKER. The advantage or LEX's syntactic
approach is that it is general-it can be applied to any generalization language.

The Problem Generator

The purpose of the problem generator is to select a set of integration
problems that form a guod teaching sequence (see Article XIV.A). This portion
of LEX is still under development, so only some strategies that have been
proposed for the design of the "Problem generator are discussed here.

One strategy for selecting a new problem is to find an operator whose
version space is still unrefined and select a problem that "splits" the version
space-that is, an Lntegral that matches only half of the patterns in the S
and G sets. If the problem solver can solve such a problem, LEX will be able
to refine the version space for that operator.

UIll

TIRM IG.'O bI, I, h ... M((1144-Oif- I,) h
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Figure D5d•-4. Function hierarchy used in LEX's gcneralization language.
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A second, related strategy is to take a problem that LEX has already
solved and modify it In some way. For instance, having solved the integral
f 3U sin z dx, LEX could consider attempting the integral f 5Z sin z dz. This
would force it to generalize its version space to indicate that any constant
could appear (not just 5 or 3). The generalization hierarchy in Figure D5d-4
can be used to create such training problems.

A third strategy is to look for overlaps in the knowledge base. If there
are two operators whose version spaces overlap, the problem generator can
choose a problem for wluch both operators are believed to be applicable.
The resulting attempt to solve the problem may show that only one of the
operators should be used in such situations.

Finally, when LEX is just beginning to learn, it may be necessary to apply
the inverses of the integration operators to create problems of known difficulty
for the problem solver to solve. This is analogous to the technique of providing
students in chemistry courses with an "unknown" that is, in fact, deliberately
synthesized by the professor. LEX must learn how to control its search so that
it can solve the training problem without being overwhelmed by combinatorial
explosion.

The problem generator, more than any other component of the" :.iýX
system, must have meta-knowledge of what LEX already knows and wherc it
weaknesses are. It must keep a history of previous problem-solving attempts,
so that it does not repeatedly propose unsolvable or uninformative problems.
The design of the problem generator is, in fact, the most dillicult part of the
LEX project.

Conclusion

LEX learns when to apply the standard operators of symbolic integra-
tion. For each integration operator, the system learns a heuristic pattern.
The problem solver matches these patterns against the expression being inte-
grated to determine which operators should be applied. LEX obtains train-
ing instances by observing its own attempts to solve integration problems.
Similarly, LEX obtains its peformance standard by computing the cost of
the shortest solution path that it round when it tried to solve the problem.
The credit-assignment problem is solved by conducting a deeper search and
crediting those decisions that led to the minimmini-cost solution. Decisions that
caused the problem solver to depart from the minimum-cost path are blamed.
Positive and negative training instances are thus extracted and processed by
the generalizer to update the version spaces or the inwegration operators.

Experiment planning is implemented in L1EX by the problem generator,
which employs a variety of strategies to select problems that will help the
other components of the system refine the knowledge base.

The primary weakness of LEX, and a source of its generality, is that
it employs only syntactic methods of generalization. It is unable to reason

/ N
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about the meanings of its optrators, and ýhus it cannot use knowledge abou,
dependencies among operators to determine how the heuristics should be
generalized.

LEX does not attack the probiems of learning new operators (i.e., right-
hand sides oa heuristic rules) or learning operator sequences (i.e., macros).
To learn a new integration operator, LEX would need much more knowledge
about mathematics and the goals of integration. This is a very difficult
learning problem. The problem of learning mateo operators (i.e., useful
sequences of operators) and their appil'cability condition3 has been addressed
in HACKER and STIRIPS. Further work on LEX may include the learning of
such operators.
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D5e. Grammatical Inference

MOST At RESEARCHERS employ numerical or logical representations in their
learning systems. in work on adaptive systems, for example, the concept t~o be
learned is often represented m a vector of numerical weights. Most of the other
systems described in this chapter represcnt their knowledge in logic-based
description languages (e.g., predicate calculus, semantic nets, feature vectors).
A number of researchers, however, have developed systems that employ formal
grammars to represer., the leared concepts. This article discusses the body

of work, known as Grrammatical inference, that secks to learn a grammar prom
a set of trEining instances.

The primary interest in grammar learning can be traced to the use of for-
mat grammars for modeling the stru ' cture of natural language (see Chomhky,
1957, 1965). The question of how people learn to speak and understand lIan-
guage led to studies of lareguage acquisition; interest in modeling the lan.
guages of other cultures encouraged the development of computer programs
to help field researchers construct grammars for unfamiliar languages (Klein
and Kuppin, 1970); and recent attempts by patternr'cognition researchers to
use grammars to describe handwritten characters, visual scenes, and c~oud-
chamber tracks have created a need for gramnmatical-inference techniques.
Thus, all of these researchers are interested in methods for learning a gram-
mar from a set of training instances.

A grammar is a system of rules describing a lanbuagt and telling which
sentences are allowed in the language (see Article hV.C1, in Vol. I). Grammars
can describe natural langutiages-that is, langtages spoken by people-and for-
mal languages-that is, simple languages amenable to mathematical analysis.
I. natural languages, grammar rules indicate lh peneratly accepted ways of
constructing sentences. In formal laaiguagcs, however, grammars are applied
much more strictly. A formal grammar for a language, L, can be viewed i a
predicate that tells, for any sentence, wattethsr it is gramniatical, that is, "in"
the language L, or ungrammatical, th- , not, a legal sentence in L. From
this formal perspective, a language is simply a potentially infinite set of all
legal sentences, and a grammar is simply a .cecription of that set.

One might expect ye task of earning a grammar to be the same as the
task of learning a single concept (see Sec. XIV.D3), since a single concept can
also be viewed ns a predicate describing some set of okjects. Usually, however,
this is not the cahe. iost formal languages are loo conplex to be described
bn-ua single concept or rule. Inostead, a grammar i- usually written as a set
of rules that describe the phrase structure of the language. For example, we
might have one rule that says: A sentence is an article followed by a noun
phrase followed by a verb phrase. This could he written as the grammar rule:

4914In ih xettets f.ann rma ob h aea h
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(scntta...) (article) (noun phrase) (verb phase).

This rule describes the overall structure of a sentence. Of course, there are
V many different kinds of noun and verb phrases. These can also be described

by phrase-structure rules. We might, for example, write another rule

(verb phrase) -- (verb)

for the simplest case in which the verb phrase is just a single word, as in The
boy cried. A more complex verb phrase could be written as

(verb phrase) - (verb) (article) (noun phrase)

for sentences like The program learned the grammar.
A grammar can thus be built out of a set of phrase-structure rules (also

called productiona). These rules break the problem of determining whether
a sentence is grammatical into the subproblems of determining whether it is
composed, for example, of a grammatical article followed by a grammatical
noun phrase followed by a grammatical verb phrase. In this way, the single
concept grammatical sentence is broken into the subconcepts of noun phrase
and verb phrase. Moreover, such subconcepts are not independent but interact
according to the grammar rules. Thus, determining whether a sentence is
"grammatical is a multiple-step task involving the sequential application of
phrase-structure rules. It is for this reason that we include grammatical
inference in our survey of systems that learn to perform multiple-step tasks.

In this article, we first introduce formal grammars and their uses and
then discuss the theoretical limits of grammatical inference. The problem
of learning a grammar from training instances has received a fair amount of
mathematical analysis. We describe the principal results of this work along
with their relevance for practical learni.ig systems. Finally, we present the
four major methods that have been developed for learning grammars.

Grammars and Their ffses

In the theory of formal languages, a language is defined as a set of strings,
where each string is a finite sequence of symbols chosen from some finite
vocabulary. In natural languages, the strings are sentences, and the sentences
are sequences of words chosen from some vocabulary of possible words. To
describe languages, Chomsky (1957, 1965) introduced a hierarchy of classes
of languages based on the complexity of their underlying grammars. We will
focus primarily on the context-free languages (and grammars).

A context-free language is defincd by the following:

1. A terminal vocabulary of symbols-the words of the language;

2. A nontermmnal voca6ulrry of symbols-the syntactic categories (e.g., "noun,"
"ve, o") of the language;

-. - - K , -.
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3. A set of prduettion--the phrase-structure rules of the language; and

4. The start synboL

The best way to understand these definitions is by considering an example.
Examine the following context-free grammar, C, with

(a) the terminal vocabulary {a, the, boy, girl, petted, held, puppy, kitten,
wall, hill, by, on, with);

(b) the nonterminal vocabulary (Z, S, V, A, P, W, O,X};

(c) the productions

Z -. ASV,
V-IX, V-.XAO, V-. VP,
P- WAS, P- WAO,
A - a, A - the,
S -. boy, S -girl,
W - by, W --. on, W - with,
0 - puppy, 0 - kitten, 0- hill, 0- wall,
X - petted, X - held; and

(d) the start symbol, Z.

This grammar, G, describes a language of simple sentences such as The boy
held the puppy and The girl on the hill held a kitten. It describes a sentence
by deriving it from the start symbol. We start with the symbol Z and
choose a production that has Z as the left-hand side. There is only one
such rule in G: Z -- ASV. We apply this rule by rewriting Z as the string
ASV. Now we choose one of the nonterminals, A, S, or V, and find a rule
that can be used to rewrite it. If we choose the rule V .-- YCAO, our current
sentence becomes ASXAO. We continue rewriting nontermii ala (according to
the production rules) until the sentence contains only term.•nal symbols. A
complete derivation for the sentence The boy held the puppy is as follows:

Current sentence Chosen production rule

z
(Z-. ASV)

ASV
(V- XAO)ASIACO
(A - the)

the SLI O

(s.-. boy)
the boy UAO

(X-. held)
the boy held AO

(A - the)
the boy held the 0

(0 - puppy)

The boy held the puppy

• ./-. ." ".. "i , ' , " • " ,"1 * A I,,, ... " T:
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ZV

A 0

the boy held the puppy

Figure D5e-l. Derivation tree for the sentence The boy held the puppy.

This is usually depicted as a derivation tree (see Fig. D5e-1).
Depending on which rules we choose during the rewriting process, we get

different sentences. If we choose "O -- kitten" instead of "0 -- puppy," we
get the sentence The boy held the kitten. The context-free language described
by GC is the set of all possible sentences that can be derived from Z by the
rewrite rules in G. Notice that we can also start our derivation with some
symbol other than Z. If we start with the nonterminal V, for example, we
generate the eublanguage t.f all verb phrases in G. Each nonterminal has a
sublanguage. Thus, each nonterminal represents a subconcept, such as noun
phrase (5) or verb phrase (V), of the overall concept of grammatical sentence
(Z).

In pattern recognition and language understanding, the performance task
facing a computer program is not the generation of grammatical sentences but
their recognition. Given i sentence, the Oroblcm of determining whether it
is grammatical-that is, of finding a derivation for the sentence-is called
parsing. Many efficient algorithms have been developed for parsing sentences
in context-free languages (see Article IV.D, in Vol. 1; Hlopcroft and Ullman,
1969).

Extensions . Context-free Grammars

Context-free grammars are able to capture much of the structure of
natural and artificial languages, especially computer programming languages.
However, many problems require extensions to the basic context-free grammar
framework.

Transformntional grammars. Some characteristics of natural lan-
guage cannot be modeled with context-free grammars. One example that is
frequently cited is the "respectively" construction in sentences such as The
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boy and the girl held the puppy and the kitten, respectively. Other examples
include the conversion of sentences from active to passive voice and discon-
tinuous constituent3 like throw out in the sentence HIe threw the junk out. In

• response to these shortcomings of context-free grammars, Chomsky (1965) de-
veloped the theory of transformational grammar (see Article IV.C2, in Vol. I),
in which a sentence is first derived as a so-called deep structure, then manipu-
lated by transformation rules, and finally converted into surface form by
phonological rules. The deep structure, which corresponds to the basic de-
clarative meaning of the sentence, is derived by a context-free grammar. The
transformation rules can modify the structure-but not the meaning-by al-
tering the derivation tree. For example, a transformation rule can convert.a
declarative sentence into a question by flipping branches of the tree to change
the word order. Under such a transformation, the sentence The bo-, is hold-
ing the dog becomes the question Is the boy holding the dog? Some methods
have been developed for learning transformation rules, as well as context-free
grammars, from examples. Particular attention has been given to learning
these rules under conditions believed to be similar to those under which a
child learns a language.

Stochastic grammars. Although context-free grammars (and transfor-
mational grammars) can represent the phrase structure of a language, they
tell nothing about the relative frequency or likelihood of appearance of a given
sentence. It is common, for instance, in context-free grammars to use recur-
sive productions to represent repetition. In our sample grammar above, the
production V -* VP is recursive. If we apply it over and over again, we can
generate sentences like The boy held the puppy on the wall by the hill with the
kitten... Although the sentence is technically grammatical, it would be nice
to represent the degree of acceptability of such a sentence.

Stochastic grammars provide one approach to this problem. Each produc-
tion in a stochastic grammar is assigned a probability of selection-that is, a
number between zero and one. During the derivation process, productions are
selected for rewriting according to their assigned probabilities. Consequently,
each string in the language has a probability of occurrence computed as the
product of the probabilities of the rules in its derivation. If we took our
sample grammar, for instance, and assigned probabilities of .5 to all of the
rules except X--. ASV (probability 1.0) and V--+ XAO (probability .33), the
string "The boy held the puppy" has probability 1(.33)(.5)(.5)(.5)(.5X.5) =
.01, while the string "The boy held the puppy on the wall by tihe hill with the
kitten" has probability 1.58944 X 10-. This expresses tihe intuition that the
second sentence is very unlikely to be conmidered acceptable.

Stochastic grammars have been employed by pattern recognition research-
ers in noisy and uncertain environments where it is better to have an in-
dication of the degree of grammaticality of a sentence than a single yes-no
decision. Stochastic grammars also allow grammatical-inference programs to

-° . ' . -- .
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represent uncertainty about the true language when noisy and unreliable
training instances are presented.

Graph grammars. In syntactic pattern-recognition problems, it is often
important to represent the two- or three-dimensional structure of "sentences"
in the language. Traditional context-free grammars, however, generate only
one-dimensional strings. Context-free graph grammars have been developed
that construct a graph of terminal nodes instead of a string of terminal symbols
(see Article XMU.M3). Rewrite rules in the grammar describe how a nonterminal
node can be replaced by a subgraph. Evans (1971) employs a set of graph
grammars to describe visual scenes. Other researchers have applied graph
grammars to the pattern recognition of handwritten characters and cloud-
chamber tracks. This latter use of grammars is especially appropriate in
that the rewrite rules in the grammar directly correspond to properties of
the pattern. For example, subatomic particles decay into other particles
only in certain ways, and these decay events can lue modeled naturally with
productions whose left-hand sides have the decaying particles and whose right-
hand sides state the corresponding particles into which they decay.

Theoretical Limitations of Grammatical Inference

Now that we have reviewed some of the important kinds of formal lan-
guages and grammars, we turn our attention to the problem of learning these
formal languages from examples. As with other forms of learning from exam-
pies, it is profitable to view grammatical inference as a search through a
rule space of'all possible context-free grammars for a grammar that is consis-
tent with the training instances chosen from an instance space. In language
learning, the training instances are usually sample sentences that have been
classified by a'teacher to indicate whether or not they are grammatical. The
goal of the grammatical-inference program is to find a grammar for the "true"
language that underlies the training instances.

Under what conditions is it possible to learn the correct context-free
language from a set of training instances? This question has received a fair
amount of study, and several results have been obtained. The most important
result is that it is impossible to learn the correct language (or the correct single
concept) fro'. positive examples alone. Gold (1967) proved that if a program
is given an infinite sequence of positive examples-that is, sentences known
to be "in" the language-the program cannot determine a grammar for the
correct context-free language in any finite time. To see why this is so, consider
that at some point the proFram has received k strings {aiJ., ... , a,}. There
are many possible languages that are consistent with these examples. The
most general, universal language, which contains all possible strings of the
terminal symbols, certainly contains all of the strings in the sample. Similarly,
the trivial language L , aIt 32, .. S.,a} is the most specific language that

.. ... • :,• , o'--" --- ,.o.. . . .
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contains all of the strings in the sample. There are many possible languages
between these two extremes. No finite sample will allow the learning program

to choose the correct language from these various possibilities.
Fortunately, in most learning situations, additional information is avail-

able Lhat can help constrain the choices of the learning program so that a
reasonable language, and its grammar, can be found. Let us examine possible
sources of this additional information.

Negative examples. Negative training instances allow the program to
eliminate grammars that are too general (see Article XIV.D3a, on the candidate-
elimination algorithm). Cold (1967) showed that if the learning program could
pose questions to an informant, that is, ask a person whether or not a given
string was grammatical, the true language could be learned. The informant

could be used to obtain complete positive and negative examples and thus
determine exactly the true language. Gold called this learning situation infor-
mant presentation.

Stochastic presentation. When a program is trying to learn a stochas-
tic context-free grammar, learning is also possible if the training instances are
presented to the program repeatedly, with a frequency proportional to their
probability of being in the language. In this stochastic-presentation method,
the program can estimate the probability of a given string by measuring its
frequency of occurrence in the rinite sample. In the limit, stochastic presen-
tation gives as much information as informant presentation of positive and
negative examples: Ungrammatical strings have zero probability, and gram-
matical strings have positive probability.

Prior distributions. As we have seen above, even after a set of positive
instances has been processed, there are still many possible languages, and
hence many possible grammars, for the learning program to choose from.
Furthermore, even when a unique language has been determined, as with
informant presentation, there may be several different grammars that all
generate the same language. One way to tell a program how to choose the right
grammar is to define a prior probability (or desirability) distribution over all
possible grammars. The program can then choose the most probable grammar
that is consistent with the training instances. llorning (1969) employs a
prior distribution that makes simple grammars more likely than complex
ones, where simple grammars are those that have fewer nonterminals, fewer
productions, shorter right-hand sides, and so on.

Semantics. According to cognitive psychologists, children receive lIttle
negative feedback when they are learning a language. Consequently, we
are faced with the puzzle of how people are able to learn natural language
almost entirely from positive training instances. One important source of
information for children may be the meaning of the sentences they hear. A few
psychological theories, and some computer programs (see below), have been
developed that incorporate semantic constraints as a source of information.
These theories basically claim that the gramnmatical structure of a language
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parallels the semantic structure of the internal representation that people
employ.

Structural presentation. One techkiique employed by pattern recog-
nition researchers to aid grammatical inference is structural prementation, in
which the program is given some information about the derivation tree of
the sample sentences. This is similar to the use of book training in Samuel's
checkers program. The derivation tree provides a move-by-move (or, in this
case, a rule-by-rule) performance standard along with each training instance.

Grammar restriction. One final way to get around Gold's results is
to learn only special subclasses of the context-free languages. In particular,
grammatical inference is much easier for regular and delimited languages,
which, though not as powerful as the context-free languages, have important
practical applications.

In summary, thel, although Gold's theorems show that the formal prob-
lem of learning a ccntext-trec grammar from positive instances alone is impos-
sible, there are many alternative sources of information that allow programs,
and presumably people, to learn language.

Methods of Grammatical Inference

In this section, we survey four basic techniques that have been used to
learn context-free grammars from training instances. The various methods,
some of which parallel the basic learning methods discussed in Article XIV.DI,
differ primarily in the way that they search the rule space and the kinds of
information that they use to guide that search.

The first approach we discuss is enumeration. Enumerative, or generate-
and-test, methods propose possible grammars and then test them against
the data. The second basic grammatical-inference technique is construction.
Constructive methods usually learn from positive examples only. They collect
information about the structure of the sample strings and use it to build a
grammar reflecting that structure. Refinement methods form a third impor-
tant class of grammatical-inference techniques. They start with a hypothesis
grammar and gradually improve it by m;'ans or various heuristics based on

addniatonal tamining instances. Finally, seme'uticc-based methods employ knowl-
edge of the meanings of the sample sentences. to decide how to search the

rule space. Most semantics-based methods have been developed to model how
children learn natural languages.

Rules of generalization and specia ization For grammars. Before
describing these learning methods in more , etail, wc first discuss three meth-

od for tile syntactic generalization and spe ialiation of grammars:

1. Merging. A context-free grammar can le generalized by an operation
called merging. Suppose the grammar ( contains two nonterminals, A
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and B. We can modify G to obtain a more general grammar by merg-
ing A and B-that is, by creating a new nonterminal, Q, and replacing
all occurrences of A and B by Q. This has the effect of pooling the
sublanguages of A and B to create a new sublanguage, Q, whose strings
may appear anywhere that either the strings of A or the strings of B
could have appeared. S&ppose, for example, that in our sample gr:,.mmar
discussed above, we merged S (subjects) and 0 (objects) to obtain Q. The
productions of. the grammar G become:

Z- AQV
V--X, V- XAQ, V-. V?,
P--. WAQ,
A -- a, A -- the,

W-- by, W -* on, W - with,
Q -* puppy, Q - kitten, Q - hill, Q - wall,

Q- boy, Q - girl,
X-- petted, 1-- held.

Previously ungrammatical sentences like The puppy petted the boy are now
allowed. The language is thus larger and, consequently, more ý,'eneral.

2. Splitting. The inverse of merging is a specialization process called split.
ting. We can specialize a grammar by splitting the sublangua6 , or one
nonterminal, N, into two smaller sublanguages, N, and N,. This is
accomplished by replacing some occurrences of N in the grammar by N1
and others by N2. In the graLmmar above, for instance, we could split
the A (article) nonterminal into A, and A2 to obtain the grammar:

Z - At QV,
V- X, V-.. XA Q, V-. VP,
P-i WAsQ,
At-.a, Al-,the,
W- by, W - on, W - with,
Q - puppy, Q - kitten, Q - hill, Q -- wall,

. Q-'boy, Q - girl,
X - petted, X -- held.

Now all sentences must begin with "a," and all prepositional phrases and
object phrases must use "the." The previously grammatical sentence
The boy petted the puppy is now illegal. This language is therefore more
specialized.

3. Disjunction. One operation that is similar to merging is called disjuiic-
tion. In disjunction, we choose two .strings, s• and 32, and create at new
nonterminal, D, whereby the rules D - st and D - s,2 are addcd to the
grammar. Every occurrence of the strings s1 and 82 in existing produc-
tions is replaced by D. For example, we could disjoin AO and AS in our
sample grammar to create the new nonterminal, N (noun phrase). The
grammar then becomes:
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Z-_ NV,
V -. X V-.XN, V-. VP,
P -b WN,
N-.AS, N-.AO,
A-"a, A-.the,
S$- boy, S- girl,
W--.by, W--oon, W--with,
0 - puppy, 0 - kitten, 0 - hill, 0 -- wall,
X - petted, X-i held.

This operation is similar to merging, except that it can be applied to
strings of terminals and nonterminals. If both of st and s3 ase simple
nonterminal symbols, disjunction has the same effect as merging. If only
one of st or s2 is a nonterminal, the operation is called ubatitution.

These rules of generalization can be applied to move from one point in
the rule space (i.e., one grammar) to another. We now turn our attention to
the four basic methods of grammatical inference and show how they apply
these operations to search the space of possible context-free grammars.

Enumerative Method.s

Enumerative methods generate grammars one by one and test each to
determine how well it accounts for the training instances. The first enumera-
tive method we consider is that of Horning (1969), who developed a procedure
for finding the most plausible stochastic grammar consistent with a set of
stochastically presented training instances. The general idea behind fforning's
method is to enumerate all possible grammars in order of simplicity and choose
the first grammar that is consistent with the training data. The actual algo-
rithm is somewhat more complicated, however, since Horning seeks the most
likely stochastic grammar, that is, the grammar G that is most likely to have
generated the observed set S of sample strings. This is expressed formally as
the grammar G that maximizes P(G I S), that is, the probability of G given S.
Unfortunately, it is difficult to compute P(G I S) directly from the training
instances. Bayes' theorem, however, provides a way of computing P(G I S)
from three other quantities, P(G), P(S I G), and P(S):

P(GI$S)- P(G) x P(S I G)I
P(S)

where P(G) is the a priori probability that G is the "true" grammar, P(S)
is the a priori probability of observing the particular sample S, and P(S I G)
is the probability of observing S given the grammar G. Since P(S) is inde-
pendent of C, we can maximize P(G I S) by just maximizing the numerator
P'(G S S) = P(G) x P(S I G). The probabilities P(G) and P(S G) can be
computed for any particular grammar G.



/

504 Learning and Inductive Inference XIV

The probability P(S I G) that the training instances S will be generated
by the stochastic grammar G can be computed directly from G by parsing
each sentence in S. The problem of computing P(G) is more difficult, however.Horning sought to have the a priori probability of G. reflect the complexity

or the grammar G. Simple grammars should be highly probable; complex
grammars should be improbable. Consequently, he developed the idea of a
grammar-grammar, that is, a stochastic grammar that generates a stochastic
grammar as its terminal string. Such a grammar-grammar can be constructed
irom a terminal vocabulary of symbols such as A, B, C, Z, -*, etc. Since, as
we have seen above; a stochastic grammar generates short-strings with a much
higher probability than it does long strings, the grammar- grammar generates
simple grammars with a much higher probability than it does complex ones. In
particular, the probability P(G) is the probability that the grammar-grammar
would generate G.

Since we can compute P(G) and P(S I G), we can use Bayes' theorem
to compute P'(G I S). Therefore, if we compute P'(G I S) for all possible
grammars, C, we can find the grammar that most likely generated S. Such
a procedure is impossibly inefficient, however. Instead, Horning used the
fol!owing technique. First, he developed a procedure that could enumerate
all possible stochastic grammars starting with the most likely grammar, G1 ,
and continuing on in order of decreasing probability P(C,). Next, he noticed
that P'(GjI S) did not have to be computed for all grammars but only for
those grammars whose probability P(C1 ) was greater than P'(Ct I S). This
is because once P(G1 ) falls below P'(C1 I S), there is no way that multiplying
by P(S I GC) will ever exceed P'(GC IS), since P(S I 0,) is always less than
or equal to 1.

Consequently, Horning's method enumerates all grammars C, starting
with G, and continuing until P(G,) < Pt(GC I S). The probability P'(C. S)
is computed for each grammar GC, and the grammar that maximizes P'(Gj I S)
is output as the grammar most likely to have produced the set of examples, S.

The algorithm is theoretically correct-it always finds the best grammar-
but it is still too inefficient for all but the smallest grammars. Therefore,
Horning modified the grammar generator to generate only grammars that
were deductively acceptable (DA). A grammar is deductively acceptable if it
generates every string in the sample, S, and if every production in G is used
to derive at least one of the training instances. In other words, a DA grammar
must be consistent with the training instances and must not be overly specific
or cluttered by useless productions. It can be shown that all DA grammars
with k +- I nonterminals can be obtained by splitting DA grammars with k
nonterminals. Furthermore, once a grammar ceases to be deductively accept-
able, no further splits will make it deductively acceptable, since it is already
overly specific.

These facts were used by Horning to organize the rule-space search.
Starting with the most general (and most likely) DA grammars, repeated splits

I
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are made until either the grammars ceab- to be deductively acceptable or their
a priori probability PCGi) falls below the bound P'(G0 I S). The probability
P'(Gi I S) is computed for all of the generated grammars, and the grammar
that maximizes P'(G, I S) is selected. This procedure, although more efficient
than the first one, is still of theoretical interest only.

A second enumerative method makes use of training instances to guide
the enumeration of plausible grammars. Pao (1969) describes an approach to
grammatical inference that resembles the plan-gencrate-test paradigm of the
DENDRAL program (see Sec. VTI.C2, in Vol. 11). In the initial planning phase,
Pao's algorithm analyzes the (positive) training instances and constructs a
trivial grammar-that is, a very specific graminar that generates only the
training examples. A partially ordered set (actually, a lattice) of plausible
grammars can be generated by merging nonterminals from this trivial gram-
mar. During the generate-and-test phase, Pao's algorithm enumerates all of
these grammars in order, from most specific to most general, and tests them
by consulting an informant.

Pao's algorithm generates two grammars at a time, G and 11, and uses
an informant to eliminate one of the two. The informant is presented with
a new sentence, s, that is generated by G but not by H. If the informant
says a is in the "true" language, then 11 and all grammars more specific than
H are removed from further consideration. Also, the set of grammars more
general than H (but not more general than G) is searched in order from
general to specific, and grammars that do not generate a are discardcd. If,
on the other hand, the informant says that s is not in the "true" language,
then G and all grammars more general than G are removed from further
consideration. The generating and testing of possible grammars continues
until only one possible grammar remains. This search through the partially
ordered set of all possible grammars is similar to Mitchell's (1978) candidate-
elimination algorithm (see Article XIV.D3a). In Pao's program, though, an
active experimentation approach is employed to search the space rather than
waiting for new training instances to drive the search.

Unfortunately, this method does not work for general context-free gram-
mars. The basic algorithm works only for regular grammars-that is, gram-
mars whose productions all have the form N - tM or N -* t for t, a single
terminal symbol, and A, a single noaterminal symbol. In regular languages,
there is no difficulty finding a test sentence a to distinguish between two gram-
mars C and H. Unfortunately, this .annot be done for general context-free
languages. Pao has extended the method to handle delimited grammars--
a somewhat larger class of grammars than the regular grammars.

Constructive Methods

Constructive methods attempt to build a plausible grammar using only
the information from a positive sample with no informant. From Gold's
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theorems, it is clear that this problem is ill-formed, since no unique language
is determined by a set" of positive instances. Hlowever, various heuristics have
been developed for constructing simple, fairly general grammars from positive
instances only.

One important set of heuristics is based on the idea of the distribution
of substrings in the language. In context-free languages, certain classes of
strings, such as noun phrases and prepositional phrases, tend to appear in
the same contexts in different sentences. This suggests that we might be able
to discover interesting classes of strings by looking at their surroundings in
the set of sample sentences. For instance, the words a and the both tend
to occur at the beginnings of sentences, so perhaps they should be grouped
together to form the class of articles. This is done by creating a nonterminal
A and inventing the production rules "A -- a" and "A - the." Distributional
analysis has been employed by Harris (19614), Fu (1975), Kelley (1967), and
Klein and Kuppin (1970)

For regular grammars, Fu (1975) has applied a particular kind of distribu-
tional analysis based on the idea of the formal derivative of a string. The
"formal derivative of a string a is the set of strings

D.L ( (t I the string at is in the language L],

that is, all of the strings t that follow a in the given language L in sentences
where a is at the beginning of the sentence.

Formal derivatives can be employed to construct regular grammars in a
straightforward way. Imagine that we have a grammar G, and we are in the
process of generating a sentence. Suppose that, so far, we have generated the
string WU, where U is a nonterminal and . is a terminal string. If we take
formal derivatives for every string sa that appears in the sample (where a is
a single terminal symbol), we can create rnew nonterminals for each distinct
formal derivative. We can add the productions

U-- aV1

U..bV2

U-.-mVk

to the grammar, G, where V1, Vg, .... Vk correspond to the formal derivatives
of aa,ab, ... , am. The effect of this constrwiction is to group together all of
the strings in the formal derivative of sa, for example, arid place them in
the sublanguage for V1. We can construct the entire grammar G by initially
taking a to be the null string and U to be the start symbol.

The chief difficulty of distributional methods is that some definition of
similar contexts is needed so that strings that appear in similar contexts can
be grouped into the sublanguage for a new nonterminal symbol. Problems
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can aiso arise when one string is in two dilTerent sublanguages and therefore
appears in different contexts. The word program, for example, can be both a
noun and a verb.

Another approach to constructive inference oa grammars is to look for
repetition in the sample and model it as a recursive production. This method
is rarely sufficient in itself to construct the whole grammar, but it can be used
in combination with other methods. Consider, for example, the set of training
instances {a, aaa, aaaa}. A reasonable grammar to infer has the productions
S -- a and S- Sa and generates all possible strings of repeated as.

To employ this repetition heuristic, it is hIelpful to know the properties of
repetition for different kinds of grammars. For regular grammars, iteration
always takes the form of repeated choice of a string without reference to
any other strings. However, for context-free languages, repei.ition can be
more complicated. One important theorem about context-free languages
(called the uvzyz theorem) states that if a sufficiently long string uvzxyz
is in the language, then so is the string uv xy z as well; that is, v and
Sy are repeated an equal number of times. This can be represented by a
self-embedding production of the form X - VXY. Solomonoff (1964) and
Maryanski (1974) describe inference methods based on searching for double
cycles of tbe uvkxykz variety. Once a possible cycle is found, it can be tested
by consulting an informant.

Refinement Methods

Refinement method3 formulate ;i hypothesis grammar and then refine it
by applying simplification heuristics or by gathering rncw training irstances.
Knobe and Knobe (1977), for example, present an algorithm that creates
an initial hypothesis grammar, G, and then enters a refinement cycle in
which it repeatedly accepts a new grammatical string, refines G to include
the string, and generalizes and simplilies G. The initial grammar includes a
distinct nonterminal for each of the terminal symbols. In the course of the
algorithm, these nonterminals are generalized by merging. The basic learning
cycle proceeds as follows:

Step 1. Accept a grammatical string (i.e., a positive training instance) and
attempt to parse the string with the current grammar, G. If the
parse succeeds, reFeat step 1; otherwise, go to step 2.

Step 2. Compute a list of partial oarses and sort it acccrding to generality.
(A partial parse is a string of terminals and nonterminals in which
parts of the original training string have been partly parsed into
nonterminals; the more general partial parses are shorter, since
most of the sentence has been successfully parsed.) Hypothesize
the production S -. P, where S is the start symbol and P is the
"most general partial parse. (This allows the training instance to be
parsed successfully.) Use the modified grammar to generate a "t

7,
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sentence, and'ask the informantif the test sentence is grammatical.
If it is, go to step 3; otherwise, try the next most general partial
parse, and repeat until a sufficiently specific production has been
found.

Step 3. Generalize and simplify the grammar by applying some of the
merging aui suhstitution heuristics described below.

The third itep of 6eneralization and simplification is important, because
it is in this step that the new ?roductioa S :- P is integrated into the grammar
and connected to exi3ting production rules. Many different simplification and
generalization techniques have been developed by various researchers. We
survey a nn,.jer of these here.

Generalization by disjunction. One important simplification tech-
nique is to apnly disjunctica (see above) to replace two similar s-cings 3 and t,
which appear on the right-hand sides of productions, by a single nonterminai.
There are two basic heuristics 'or deciding whether a and t are similar: inter-
nal similarity and external similarity. The internal-similarity heuristic com-
pares the sublanguages generated by s and t. If the sublanguages are sL.-ilar,
the heuristic proposes that s and t are similar and should be disjoined. The
external-similarity heuristic, on the other hand, compares the contexts in
which a and t appear. As in the constructive technique of distributional
analysis, if 3 and 9 appear in similar contexts, the heuristic recommends that
they be disjoined. There are many important special cases of these heuristics:

I. Heuristics based on internal similaritt, .The firt internal-similarity heuris-
tic is subsumption. If the language ge itrated by s is a supe".et of the
language generated by t, then s and t shot:ld be disjoined. This often
occurs when 4 is a single nonternminal, X, and the rule X - t is among
the productions for Xin the grammar.

If s and t are both single nonterminais, X and Y, a second internal
heuristic can be applied. This heuristic compares the right-hand sides,
u and v, of production rules of the form X -. u and Y -- , to see if
they are similar. If they are, X and Y can be merged.

A third internal-similurity heuristic is k-tail equivalenee. Two strings s
and t are k-tail eqnivalent, for some nonnegative integer k, if the sets ofi • strings of length k or less that they generate are the same. Thus, s and
t are judged simi!ar if the short strings that they generate are the same.
This heuristic can be applied by choosing a value for k and merging
groups of nontermin-ils that are k-tail equivalent. As kc gets small, this
heuristic causes more generalization.

2. lleuristies based on external similarity. The one heuristic for external
similarity is to look at productions in which a -and t appear an the right-
hand side of productions. If s and " appear in similar contexts within
the productions, they can be disjoianed. Various spec;.,l cases of this
heuristic have been used, including the case in which s and V are both
single honterminals.
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Hypothesizing iteration. As with constructive methods, if productions
such as X -- a and X -. aa are present, a recursive production X -- Xa can
be introduced.

Shorthand substitution. When a string a appears many times on the
right-hand side of productions, it is often good to create a new nonterminal,
A, replace all occurrences of s by A, and add the production A a.9 to the
grammar. This simplifies the grammar without modifying the language that
it generates. The advantage of the simplification is that it is easier to apply
the various merging heuristics to a simplified grammar.

The k-tail heuristic was employed by Biermann and Feldman (1970) in the
inference of regular grammars. Various of the other heuristics are employed
by Klein and Kuppin (1970), Evans (1971), Knobe and Knobe (1977), and
Cook and Rosenfeld (1976). Cook and Roeenfeld are concerned with stochastic
grammars and use their heuristics to simplify grammars with a hill-climbing
procedure based on a numerical-complexity measure.

Semantics-boaed Method#

The fourth basic approach to grammatical inference employs semantic
constraints to guide the search for plausible grammars. Most of this work
has centered on language acquisition by children. The child is given positive
examples of sentences and is assumed to know the meanings of individual
words in isolation. Furthermore, the situation in which the sentence was
uttered, and, thus, some idea about its overall meaning, is assumed to be
known by the child. In mowt work, no negative examples are provided,
nor is an informant available. This is because most research in psychology
(e.g., Brown and Hlanlon, 1970) has found that children receive little or no
feedback concerning the grammaticality of the sentences they utter. Pinker
(1979) discusses the work of several researchers who have studied grammatical
inference under these asumptions, including Anderson (1977) and Hamburger
and Wexler (1975).

Anderson's Language Acquisition System (LAS) attempts to learn a context-
free grammar for English from training instances that include a representation
of the meaning of each senwence. The Human A-sociative Memory (HAM;
Article X1.E2) network notation is used to represent these sentence meanings.
Learning proceeds in a cycle similar to that of Knobe and Knobe (1977): A
sentence and its meaning are input, and LAS attempts to parse the sentence.
If the parse fails, the grammar is extended according to some refinement
heuristics so that the training sentence can be parred and assigned the correct
meaning. One such heuristic adds a word to a sublanguageW-for exarnple, it
adds chair to the sublanguage for (noun)-when the word is located at a place
in the HAM net similar to the place of other words in the sublanguage. This
is a special case of the general heuristic that the struicture of the semantic
representation is reflected in the structure of the syntax of the language. A
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more sophisticated version of this heuristic is the graph deformation condition,
which states that branches in the HAM reprenention of the sample sentence
are not allowed to cross. This heuristic rules out certain parses that would
result in an ill-formed IRAM structure. Anderson also employs one syntactic
heuristic: Two nonterminals are merged if they have similar sublanguages.

The work of Hamburger and Wexler (1975) is more theoretikal in nature
and is concerned with showing that transformational grammars (see Chomsky,
1965) are learnable. In their model, the learner is repeatedly given a sentence
and its meaning, where the meaning is represented as a deep-structure parse
tree (based on a deep-strticture context-free grammar). The learner must
find a set of transformation rules that succeed, for each sample sentence,
in converting the deep structure into the given sentence. Hamburger and
Wexler are proponents of Chomsky's nativist theory of language acquisition,
which asserts that people have built-in limits and biases that provide essential
constraints for the language-learning process. Consequently, their model of
language learning includes several factors that limit the complexity of possible
transformations.

Given these limits, Hlamburger and Wexler show that the desired set of
transformations can be learned by a program as follows. As each training
instance (a sentence and its deep structure) is received, the learner tries to
transform the deep structure into the surface sentence by applying its current
set of transformations. If this succeeds, the learner goes on to the next input
example. If not, the learner randomly adds, deletes, or alters a transformation
and goes on. This method will work as long as the learner does not repeat
transformation rules known to be incorrect. Plainly, this learning procedure
is not practical, but it does demonstrate that learning transformation rules
under these assumptions is possible.

Conclui•on

The expressiveness of grammars for use in Al knowledge representation
is somewhat limited, so interest in the diflicidt problem of grammatical infer-
ence is also correspondingly limited in the A- community. This is especially
so because of the impractical nature of many of the grammatical-inference
systems developed thus far. However, future work on the problem may yield
more powerful inference systems, and ar. und'crstanding of past work may well
be helpful in research on related learning problems.

iefercnces

We have surveyed here the motivations, limitations, and methods of gram-
matical inference. More detailed surveys of grammatical inference in the con-
text of cognitive psychology are given in Pinker (1079) and Reeker (1976).

I
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Surveys of pammaticsi inference tot us in syntactic pattern recognition are
given in Fu (1974, 1975), Biermann and Feldman (1972), and Gonzales and
Thompson (1978).

- " ... ..< --
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